International Conference on Medical Image Computing and Computer-Assisted Intervention

MICCAI 2015: Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015 pp 523-530 | Cite as

Identification of Cerebral Small Vessel Disease Using Multiple Instance Learning

  • Liang Chen
  • Tong Tong
  • Chin Pang Ho
  • Rajiv Patel
  • David Cohen
  • Angela C. Dawson
  • Omid Halse
  • Olivia Geraghty
  • Paul E. M. Rinne
  • Christopher J. White
  • Tagore Nakornchai
  • Paul Bentley
  • Daniel Rueckert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9349)

Abstract

Cerebral small vessel disease (SVD) is a common cause of ageing-associated physical and cognitive impairment. Identifying SVD is important for both clinical and research purposes but is usually dependent on radiologists’ evaluation of brain scans. Computer tomography (CT) is the most widely used brain imaging technique but for SVD it shows a low signal-to-noise ratio, and consequently poor inter-rater reliability. We therefore propose a novel framework based on multiple instance learning (MIL) to distinguish between absent/mild SVD and moderate/severe SVD. Intensity patches are extracted from regions with high probability of containing lesions. These are then used as instances in MIL for the identification of SVD. A large baseline CT dataset, consisting of 590 CT scans, was used for evaluation. We achieved approximately 75% accuracy in classifying two different types of SVD, which is high for this challenging problem. Our results outperform those obtained by either standard machine learning methods or current clinical practice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akbas, E., Ghanem, B., Ahuja, N.: MIS-Boost: Multiple instance selection boosting. arXiv preprint:1109.2388 (2011)Google Scholar
  2. 2.
    Byrd, R.H., Schnabel, R.B., Shultz, G.A.: Approximate solution of the trust region problem by minimization over two-dimensional subspaces. Mathematical Programming 40(1–3), 247–263 (1988)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chawla, M., Sharma, S., Sivaswamy, J., Kishore, L.: A method for automatic detection and classification of stroke from brain CT images. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3581–3584. IEEE (2009)Google Scholar
  4. 4.
    Conijn, M.M.A., Kloppenborg, R.P., Algra, A., Mali, W.P.T.M., Kappelle, L.J., Vincken, K.L., Van Der Graaf, Y., Geerlings, M.I.: Cerebral small vessel disease and risk of death, ischemic stroke, and cardiac complications in patients with atherosclerotic disease: The second manifestations of arterial disease-magnetic resonance (SMART-MR) study. Stroke 42, 3105–3109 (2011)CrossRefGoogle Scholar
  5. 5.
    Dalca, A.V., et al.: Segmentation of cerebrovascular pathologies in stroke patients with spatial and shape priors. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 773–780. Springer, Heidelberg (2014)Google Scholar
  6. 6.
    Donnan, G., Fisher, M., Macleod, M., Davis, S.M.: Stroke. The Lancet 371, 1612–1623 (2008)CrossRefGoogle Scholar
  7. 7.
    Durukan, A., Tatlisumak, T.: Acute ischemic stroke: Overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacology Biochemistry and Behavior 87, 179–197 (2007)CrossRefGoogle Scholar
  8. 8.
    Fazekas, F., Chawluk, J.B., Alavi, A., Hurtig, H.I., Zimmerman, R.A.: MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. American Journal of Neuroradiology 8(3), 421–426 (1987)Google Scholar
  9. 9.
    Gillebert, C.R., Humphreys, G.W., Mantini, D.: Automated delineation of stroke lesions using brain CT images. NeuroImage: Clinical 4, 540–548 (2014)CrossRefGoogle Scholar
  10. 10.
    Ho, T.K.: The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)CrossRefGoogle Scholar
  11. 11.
    Leistner, C., Saffari, A., Bischof, H.: MIForests: Multiple-instance learning with randomized trees. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 29–42. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Pantoni, L.: Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. The Lancet Neurology 9(7), 689–701 (2010)CrossRefGoogle Scholar
  13. 13.
    Ramírez, J., Górriz, J., Segovia, F., Chaves, R., Salas-Gonzalez, D., López, M., Álvarez, I., Padilla, P.: Computer aided diagnosis system for the Alzheimer’s disease based on partial least squares and random forest SPECT image classification. Neuroscience Letters 472(2), 99–103 (2010)CrossRefGoogle Scholar
  14. 14.
    Rorden, C., Bonilha, L., Fridriksson, J., Bender, B., Karnath, H.O.: Age-specific CT and MRI templates for spatial normalization. NeuroImage 61, 957–965 (2012)CrossRefGoogle Scholar
  15. 15.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  16. 16.
    Sims, N.R., Muyderman, H.: Mitochondria, oxidative metabolism and cell death in stroke. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1802(1), 80–91 (2010)CrossRefGoogle Scholar
  17. 17.
    Takahashi, N., Tsai, D.Y., Lee, Y., Kinoshita, T., Ishii, K.: Z-score mapping method for extracting hypoattenuation areas of hyperacute stroke in unenhanced CT. Academic Radiology 17(1), 84–92 (2010)CrossRefGoogle Scholar
  18. 18.
    Wardlaw, J.M., Murray, V., Berge, E., Del Zoppo, G., Sandercock, P., Lindley, R.L., Cohen, G.: Recombinant tissue plasminogen activator for acute ischaemic stroke: An updated systematic review and meta-analysis. The Lancet 379, 2364–2372 (2012)CrossRefGoogle Scholar
  19. 19.
    Wintermark, M., Albers, G.W., Alexandrov, A.V., Alger, J.R., Bammer, R., Baron, J.C., Davis, S., Demaerschalk, B.M., Derdeyn, C.P., Donnan, G.A., et al.: Acute stroke imaging research roadmap. American Journal of Neuroradiology 29(5), e23–e30 (2008)Google Scholar
  20. 20.
    Zhang, Q., Goldman, S.: EM-DD: An improved multiple-instance learning technique. In: Advances in Neural Information Processing Systems, pp. 1073–1080 (2001)Google Scholar
  21. 21.
    Zhou, Z.H.: Multi-instance learning: a survey. Tech. rep., National Laboratory for Novel Software Technology, Nanjing (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Liang Chen
    • 1
  • Tong Tong
    • 1
  • Chin Pang Ho
    • 1
  • Rajiv Patel
    • 2
  • David Cohen
    • 2
  • Angela C. Dawson
    • 3
  • Omid Halse
    • 3
  • Olivia Geraghty
    • 1
  • Paul E. M. Rinne
    • 1
  • Christopher J. White
    • 1
  • Tagore Nakornchai
    • 1
  • Paul Bentley
    • 1
  • Daniel Rueckert
    • 1
  1. 1.Imperial College LondonLondonUnited Kingdom
  2. 2.Northwick Park HospitalLondonUnited Kingdom
  3. 3.Imperial College Healthcare NHS TrustLondonUnited Kingdom

Personalised recommendations