Inertial Measurement Unit for Radiation-Free Navigated Screw Placement in Slipped Capital Femoral Epiphysis Surgery

  • Bamshad Azizi KoutenaeiEmail author
  • Ozgur Guler
  • Emmanuel Wilson
  • Matthew Oetgen
  • Patrick Grimm
  • Nassir Navab
  • Kevin Cleary
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9349)


Slipped Capital Femoral Epiphysis (SCFE) is a common pathologic hip condition in adolescents. In the standard treatment, a surgeon relies on multiple intra-operative fluoroscopic X-ray images to plan the screw placement and to guide a drill along the intended trajectory. More complex cases could require more images, and thereby, higher radiation dose to both patient and surgeon. We introduce a novel technique using an Inertial Measurement Unit (IMU) for recovering and visualizing the orthopedic tool trajectory in two orthogonal Xray images in real-time. The proposed technique improves screw placement accuracy and reduces the number of required fluoroscopic X-ray images without changing the current workflow. We present results from a phantom study using 20 bones to perform drilling and screw placement tasks. While dramatically reducing the number of required fluoroscopic images from 20 to 4, the results also show improvement in accuracy compared to the manual SCFE approach.


Slipped Capital Femoral Epiphysis (SCFE) Computer-assisted Orthopedic Surgery Computer-aided Intervention Inertial Measurement Unit 


  1. 1.
    Sugano, N.: Computer-assisted orthopedic surgery. Journal of Orthopaedic Science 8(3), 442–448 (2003)CrossRefGoogle Scholar
  2. 2.
    Musahl, V., Plakseychuk, A., Fu, F.H.: Current opinion on computer-aided surgical navigation and robotics: role in the treatment of sports-related injuries. Sports Med. 32(13), 809–818 (2002)CrossRefGoogle Scholar
  3. 3.
    Rohilla, R., Singh, R., Magu, N., Devgan, A., Siwach, R., Sangwan, S.: Simultaneous use of cannulated reamer and schanz screw for closed intramedullary femoral nailing. ISRN Surg. (2011) (published online) Google Scholar
  4. 4.
    Liao, H., Ishihara, H., Tran, H.H., Masamune, K., Sakuma, I., Dohi, T.: Fusion of Laser Guidance and 3-D Autostereoscopic Image Overlay for Precision-Guided Surgery. In: Dohi, T., Sakuma, I., Liao, H. (eds.) MIAR 2008. LNCS, vol. 5128, pp. 367–376. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Marmurek, J., Wedlake, C., Pardasani, U., Eagleson, R., Peters, T.: Image-Guided Laser Projection for Port Placement in Minimally Invasive Surgery. Stud. Health Technol. Inform. 119, 367–372 (2006)Google Scholar
  6. 6.
    Fuchs, H., State, A., Pisano, E.D., Garrett, W.F., Hirota, G., Livingston, M., Whitton, M.C., Pizer, S.: Towards Performing Ultrasound-Guided Needle Biopsies from within a Head-Mounted Display. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 591–600. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  7. 7.
    Walti, J., Jost, G.F., Cattin, P.C.: A New Cost-Effective Approach to Pedicular Screw Placement. In: Linte, C.A. (ed.) AE-CAI 2014. LNCS, vol. 8678, pp. 90–97. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Volonte, F., Pugin, F., Bucher, P., Sugimoto, M., Ratib, O., Morel, P.: Augmented Reality and Image Overlary Navigation with OsiriX in Laparoscopic and Robotic Surgery: Not Only a Matter of Fashion. J. Hepatobiliary Pancreat Sci. 18, 506–509 (2011)CrossRefGoogle Scholar
  9. 9.
    Diotte, B., Fallavollita, P., Wang, L., Weidert, S., Thaller, P.-H., Euler, E., Navab, N.: Radiation-free drill guidance in interlocking of intramedullary nails. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 18–25. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Hoffmann, M., et al.: Next generation distal locking for intramedullary nails using an electromagnetic X-ray-radiation-free real-time navigation system. Journal of Trauma and Acute Care Surgery 73, Jg., Nr. 1, 243–248 (2012)Google Scholar
  11. 11.
    Stathopoulos, I., et al.: Radiation-free distal locking of intramedullary nails: Evaluation of a new electromagnetic computer-assisted guidance system. Injury, 44. Jg., Nr. 6, 872–875 (2013)Google Scholar
  12. 12.
    Arlettaz, Y., et al.: Distal locking of femoral nails: evaluation of a new radiation independent targeting system. Journal of Orthopaedic Trauma 26. Jg., Nr. 11, S. 633–637 (2012)Google Scholar
  13. 13.
    Madgwick, S.O.H., Harrison, A.J.L., Vaidyanathan, R.: Estimation of IMU and MARG orientation using a gradient descent algorithm. In: 2011 IEEE International Conference Rehabilitation Robotics (ICORR), pp. 1–7 (2011), doi:10.1109/ICORR.2011.5975346Google Scholar
  14. 14.
    Pring, E.M., Adamczyk, M., Hosalkar, H.S., Bastrom, T.P., Wallace, C.D., Newton, P.O.: In situ screw fixation of slipped capital femoral epiphysis with a novel approach: a double-cohort controlled study. Journal of Children’s Orthopaedics 4(3), 239–244 (2010)CrossRefGoogle Scholar
  15. 15.
    Azizi Koutenaei, B., Guler, O., Wilson, E., et al.: Improved Screw Placement for Slipped Capital Femoral Epiphysis (SCFE) using Robotically-Assisted Drill Guidance. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 17(01), pp. 488–495 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bamshad Azizi Koutenaei
    • 1
    • 2
    Email author
  • Ozgur Guler
    • 1
  • Emmanuel Wilson
    • 1
  • Matthew Oetgen
    • 1
  • Patrick Grimm
    • 1
  • Nassir Navab
    • 2
    • 3
  • Kevin Cleary
    • 1
  1. 1.Children’s National Medical CenterWashington D.CUSA
  2. 2.Chair for Computer Aided Medical Procedures (CAMP)TUMMunichGermany
  3. 3.Computer Aided Medical Procedures (CAMP)Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations