International Conference on Medical Image Computing and Computer-Assisted Intervention

MICCAI 2015: Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015 pp 339-346

Adaption of 3D Models to 2D X-Ray Images during Endovascular Abdominal Aneurysm Repair

  • Daniel Toth
  • Marcus Pfister
  • Andreas Maier
  • Markus Kowarschik
  • Joachim Hornegger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9349)


Endovascular aneurysm repair (EVAR) has been gaining popularity over open repair of abdominal aortic aneurysms (AAAs) in the recent years. This paper describes a distortion correction approach to be applied during the EVAR cases. In a novel workflow, models (meshes) of the aorta and its branching arteries generated from preoperatively acquired computed tomography (CT) scans are overlayed with interventionally acquired fluoroscopic images. The overlay provides an arterial roadmap for the operator, with landmarks (LMs) marking the ostia, which are critical for stent placement. As several endovascular devices, such as angiographic catheters, are inserted, the anatomy may be distorted. The distortion reduces the accuracy of the overlay. To overcome the mismatch, the aortic and the iliac meshes are adapted to a device seen in uncontrasted intraoperative fluoroscopic images using the skeletonbased as-rigid-as-possible (ARAP) method. The deformation was evaluated by comparing the distance between an ostium and the corresponding LM prior to and after the deformation. The central positions of the ostia were marked in digital subtraction angiography (DSA) images as ground truth. The mean Euclidean distance in the image plane was reduced from 19.81±17.14mm to 4.56±2.81 mm.


computational geometry as-rigid-as-possible mesh deformation abdominal aortic aneurysm EVAR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basnyat, P.S., Biffin, A.H.B., Moseley, L.G., Hedges, A.R., Lewis, M.H.: Mortality from ruptured abdominal aortic aneurysm in wales. British Journal of Surgery 86(6), 765–770 (1999)CrossRefGoogle Scholar
  2. 2.
    Douane, F., Kauffmann, C., Thérasse, E., Lessard, S., Beaudouin, N., Blair, J.F., Oliva, V., Pfister, M., Soulez, G.: Accuracy of rigid registration between CT angiography and fluoroscopy during endovascular repair of abdominal aortic aneurysm (AAA). In: Haage, P., Morgan, R.A. (eds.) CIRSE, Barcelona, Spain, September 14–18 (2013)Google Scholar
  3. 3.
    Guyot, A., Varnavas, A., Carrell, T., Penney, G.: Non-rigid 2D-3D registration using anisotropic error ellipsoids to account for projection uncertainties during aortic surgery. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 179–186. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Hoffmann, M., Brost, A., Jakob, C., Bourier, F., Koch, M., Kurzidim, K., Hornegger, J., Strobel, N.: Semi-automatic catheter reconstruction from two views. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 584–591. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. ACM Transactions on Graphics (TOG) 24(3), 1134–1141 (2005)CrossRefGoogle Scholar
  6. 6.
    Kaladji, A., Dumenil, A., Castro, M., Cardon, A., Becquemin, J.-P., Bou-Saïd, B., Lucas, A., Haigron, P.: Prediction of deformations during endovascular aortic aneurysm repair using finite element simulation. Computerized Medical Imaging and Graphics 37(2), 142–149 (2013)CrossRefGoogle Scholar
  7. 7.
    Liao, R., Tan, Y., Sundar, H., Pfister, M., Kamen, A.: An efficient graph-based deformable 2D/3D registration algorithm with applications for abdominal aortic aneurysm interventions. In: Liao, H., Edwards, P.J.E., Pan, X., Fan, Y., Yang, G.-Z. (eds.) MIAR 2010. LNCS, vol. 6326, pp. 561–570. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Pfister, M., Toth, D.: Clinical prototype of an integrated workflow for EVAR using surface meshes of pre-operative CT data. In: Proceedings of the 1st Conference on Image-Guided Interventions (2014)Google Scholar
  9. 9.
    Sakalihasan, N., Limet, R., Defawe, O.D.: Abdominal aortic aneurysm. The Lancet 365(9470), 1577–1589 (2005)CrossRefGoogle Scholar
  10. 10.
    Schanzer, A., Messina, L.: Two decades of endovascular abdominal aortic aneurysm repair: Enormous progress with serious lessons learned. Journal of the American Heart Association 1(3), e000075 (2012)Google Scholar
  11. 11.
    Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, Barcelona, Spain, July 4-6, pp. 109–116 (2007)Google Scholar
  12. 12.
    Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.: Laplacian surface editing. In: Second Eurographics Symposium on Geometry Processing, Nice, France, July 8-10, pp. 175–184 (2004)Google Scholar
  13. 13.
    Zhang, S., Nealen, A., Metaxas, D.: Skeleton based as-rigid-as-possible volume modeling. Eurographics 2010–Short Papers, pp. 21–24 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Daniel Toth
    • 1
    • 2
  • Marcus Pfister
    • 1
  • Andreas Maier
    • 2
  • Markus Kowarschik
    • 1
  • Joachim Hornegger
    • 2
  1. 1.Siemens Healthcare GmbHForchheimGermany
  2. 2.Pattern Recognition Lab.Friedrich-Alexander-University Erlangen-NurembergErlangenGermany

Personalised recommendations