International Conference on Medical Image Computing and Computer-Assisted Intervention

MICCAI 2015: Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015 pp 282-289 | Cite as

Surrogate-Driven Estimation of Respiratory Motion and Layers in X-Ray Fluoroscopy

  • Peter Fischer
  • Thomas Pohl
  • Andreas Maier
  • Joachim Hornegger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9349)


Dense motion estimation in X-ray fluoroscopy is challenging due to low soft-tissue contrast and the transparent projection of 3-D information to 2-D. Motion layers have been introduced as an intermediate representation, but so far failed to generate plausible motions because their estimation is ill-posed. To attain plausible motions, we include prior information for each motion layer in the form of a surrogate signal. In particular, we extract a respiratory signal from the images using manifold learning and use it to define a surrogate-driven motion model. The model is incorporated into an energy minimization framework with smoothness priors to enable motion estimation.

Experimentally, our method estimates 48% of the 2-D motion field on XCAT phantom data. On real X-ray sequences, the target registration error of manually annotated landmarks is reduced by 52%. In addition, we qualitatively show that a meaningful separation into motion layers is achieved.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auvray, V., Liénard, J., Bouthemy, P.: Multiresolution parametric estimation of transparent motions and denoising of fluoroscopic images. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 352–360. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011)CrossRefGoogle Scholar
  3. 3.
    Black, M.J., Anandan, P.: The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63(1), 75–104 (1996)CrossRefGoogle Scholar
  4. 4.
    Brost, A., Liao, R., Strobel, N., Hornegger, J.: Respiratory motion compensation by model-based catheter tracking during EP procedures. Med. Image Anal. 14(5), 695–706 (2010)CrossRefGoogle Scholar
  5. 5.
    Fischer, P., Pohl, T., Hornegger, J.: Real-time respiratory signal extraction from x-ray sequences using incremental manifold learning. In: ISBI, pp. 915–918. IEEE (2014)Google Scholar
  6. 6.
    Maier, A., Hofmann, H., Berger, M., Fischer, P., Schwemmer, C., Wu, H., Müller, K., Hornegger, J., Choi, J.H., Riess, C., Keil, A., Fahrig, R.: CONRAD - a software framework for cone-beam imaging in radiology. Med. Phys. 40(11), 111914 (2013)CrossRefGoogle Scholar
  7. 7.
    Martin, J., McClelland, J., Champion, B., Hawkes, D.J.: Building surrogate-driven motion models from cone-beam CT via surrogate-correlated optical flow. In: Stoyanov, D., Collins, D.L., Sakuma, I., Abolmaesumi, P., Jannin, P. (eds.) IPCAI 2014. LNCS, vol. 8498, pp. 61–67. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
    McClelland, J.R., Hawkes, D.J., Schaeffter, T., King, A.P.: Respiratory motion models: a review. Med. Image Anal. 17(1), 19–42 (2013)CrossRefGoogle Scholar
  9. 9.
    Preston, J., Rottman, C., Cheryauka, A., Anderton, L., Whitaker, R., Joshi, S.: Multi-layer deformation estimation for fluoroscopic imaging. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 123–134. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Segars, W., Mahesh, M., Beck, T., Frey, E., Tsui, B.: Realistic CT simulation using the 4D XCAT phantom. Med. Phys. 35(8), 3800–3808 (2008)CrossRefGoogle Scholar
  11. 11.
    Shizawa, M., Mase, K.: Simultaneous multiple optical flow estimation. In: ICPR, vol. 1, pp. 274–278. IEEE (1990)Google Scholar
  12. 12.
    Szeliski, R., Avidan, S., Anandan, P.: Layer extraction from multiple images containing reflections and transparency. In: CVPR, vol. 1, pp. 246–253. IEEE (2000)Google Scholar
  13. 13.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  14. 14.
    Zhu, Y., Prummer, S., Wang, P., Chen, T., Comaniciu, D., Ostermeier, M.: Dynamic layer separation for coronary DSA and enhancement in fluoroscopic sequences. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 877–884. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Zhu, Y., Tsin, Y., Sundar, H., Sauer, F.: Image-based respiratory motion compensation for fluoroscopic coronary roadmapping. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 287–294. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Peter Fischer
    • 1
  • Thomas Pohl
    • 2
  • Andreas Maier
    • 1
  • Joachim Hornegger
    • 1
  1. 1.Pattern Recognition Lab and Erlangen Graduate School in Advanced Optical Technologies (SAOT)FAU Erlangen-NürnbergErlangenGermany
  2. 2.Siemens HealthcareForchheimGermany

Personalised recommendations