Advertisement

Integrating Multimodal Priors in Predictive Models for the Functional Characterization of Alzheimer’s Disease

  • Mehdi Rahim
  • Bertrand Thirion
  • Alexandre Abraham
  • Michael Eickenberg
  • Elvis Dohmatob
  • Claude Comtat
  • Gael Varoquaux
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9349)

Abstract

Functional brain imaging provides key information to characterize neurodegenerative diseases, such as Alzheimer’s disease (AD). Specifically, the metabolic activity measured through fluorodeoxyglucose positron emission tomography (FDG-PET) and the connectivity extracted from resting-state functional magnetic resonance imaging (fMRI), are promising biomarkers that can be used for early assessment and prognosis of the disease and to understand its mechanisms. FDG-PET is the best suited functional marker so far, as it gives a reliable quantitative measure, but is invasive. On the other hand, non-invasive fMRI acquisitions do not provide a straightforward quantification of brain functional activity. To analyze populations solely based on resting-state fMRI, we propose an approach that leverages a metabolic prior learned from FDG-PET. More formally, our classification framework embeds population priors learned from another modality at the voxel-level, which can be seen as a regularization term in the analysis. Experimental results show that our PET-informed approach increases classification accuracy compared to pure fMRI approaches and highlights regions known to be impacted by the disease.

Keywords

Classification prior connectivity metabolism resting-state fMRI FDG-PET Alzheimer’s disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gramfort, A., Thirion, B., Varoquaux, G.: Identifying predictive regions from fMRI with TV-L1 prior. In: Pattern Recognition in Neuroimaging (PRNI), p. 17 (2013)Google Scholar
  2. 2.
    Gray, K.R., Wolz, R., Heckemann, R.A., Aljabar, P., Hammers, A., Rueckert, D.: Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer’s disease. NeuroImage 60(1), 221–229 (2012)Google Scholar
  3. 3.
    Jones, D.T., Vemuri, P., Murphy, M.C., et al.: Non-stationarity in the “resting brain’s” modular architecture. PloS One 7(6), e39731 (2012)Google Scholar
  4. 4.
    Koch, W., Teipel, S., Mueller, S., Benninghoff, J., Wagner, M., et al.: Diagnostic power of default mode network resting state fMRI in the detection of Alzheimer’s disease. Neurobiology of Aging 33(3), 466–478 (2012)CrossRefGoogle Scholar
  5. 5.
    Lillemark, L., Sørensen, L., et al.: Brain region’s relative proximity as marker for Alzheimer’s disease based on structural MRI. BMC Med. Imag. 14(1), 21 (2014)Google Scholar
  6. 6.
    Prados, F., Cardoso, M.J., et al.: Measuring brain atrophy with a generalized formulation of the boundary shift integral. Neurobiology of Aging 36, 81–90 (2015)CrossRefGoogle Scholar
  7. 7.
    Riedl, V., Bienkowska, K., Strobel, C., et al.: Local activity determines functional connectivity in the resting human brain: a simultaneous FDG-PET/fMRI study. Journal of Neuroscience 34(18), 6260–6266 (2014)CrossRefGoogle Scholar
  8. 8.
    Sabuncu, M.R., Desikan, R.S., Sepulcre, J., et al.: The dynamics of cortical and hippocampal atrophy in Alzheimer’s disease. Archives of Neurology 68, 1040 (2011)CrossRefGoogle Scholar
  9. 9.
    Toussaint, P.J., Perlbarg, V., Bellec, P., et al.: Resting state FDG-PET functional connectivity as an early biomarker of Alzheimer’s disease using conjoint univariate and independent component analyses. NeuroImage 63(2), 936–946 (2012)CrossRefGoogle Scholar
  10. 10.
    Trzepacz, P.T., Yu, P., Sun, J., et al.: Comparison of neuroimaging modalities for the prediction of conversion from mild cognitive impairment to Alzheimer’s dementia. Neurobiology of Aging 35(1), 143–151 (2014)CrossRefGoogle Scholar
  11. 11.
    Varoquaux, G., Gramfort, A., Pedregosa, F., Michel, V., Thirion, B.: Multi-subject dictionary learning to segment an atlas of brain spontaneous activity. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 562–573. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Villain, N., Chételat, G., et al.: Regional dynamics of amyloid-β deposition in healthy elderly, mild cognitive impairment and Alzheimer’s disease: a voxelwise PiB–PET longitudinal study. Brain 135(7), 2126–2139 (2012)CrossRefGoogle Scholar
  13. 13.
    Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., Jiang, T.: Altered functional connectivity in early Alzheimer’s disease: A resting-state fmri study. Human Brain Mapping 28(10), 967–978 (2007)CrossRefGoogle Scholar
  14. 14.
    Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage 55, 856 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mehdi Rahim
    • 1
    • 2
    • 3
  • Bertrand Thirion
    • 1
    • 2
  • Alexandre Abraham
    • 1
    • 2
  • Michael Eickenberg
    • 1
    • 2
  • Elvis Dohmatob
    • 1
    • 2
  • Claude Comtat
    • 3
  • Gael Varoquaux
    • 1
    • 2
  1. 1.Parietal Team, INRIA Saclay-Île-de-FranceSaclayFrance
  2. 2.CEA, DSV, I2BMGif-Sur-YvetteFrance
  3. 3.CEA, DSV, I2BMOrsayFrance

Personalised recommendations