Robust Automated White Matter Pathway Reconstruction for Large Studies

  • Jalmar TeeuwEmail author
  • Matthan W. A. Caan
  • Silvia D. Olabarriaga
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9349)


Automated probabilistic reconstruction of white matter pathways facilitates tractography in large studies. TRACULA (TRActs Constrained by UnderLying Anatomy) follows a Markov-chain Monte Carlo (MCMC) approach that is compute-intensive. TRACULA is available on our Neuroscience Gateway (NSG), a user-friendly environment for fully automated data processing on grid computing resources. Despite the robustness of TRACULA, our users and others have reported incidents of partially reconstructed tracts. Investigation revealed that in these situations the MCMC algorithm is caught in local minima. We developed a method that detects unsuccessful tract reconstructions and iteratively repeats the sampling procedure while maintaining the anatomical priors to reduce computation time. The anatomical priors are recomputed only after several unsuccessful iterations. Our method detects affected tract reconstructions by analyzing the dependency between samples produced by the MCMC algorithm. We extensively validated the original and the modified methods by performing five repeated reconstructions on a dataset of 74 HIV-positive patients and 47 healthy controls. Our method increased the rate of successful reconstruction in the two most prominently affected tracts (forceps major and minor) on average from 74% to 99%. In these tracts, no group difference in FA and MD was found, while a significant association with age could be confirmed.


Fractional Anisotropy Markov Chain Monte Carlo Markov Chain Monte Carlo Algorithm Uncinate Fasciculus Successful Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fischl, B.: FreeSurfer. NeuroImage 62(2), 774–781 (2012)CrossRefGoogle Scholar
  2. 2.
    Hatton, S.N., Lagopoulos, J., Hermens, D.F., Hickie, I.B., Scott, E., Bennett, M.R.: White matter tractography in early psychosis: clinical and neurocognitive associations. Journal of Psychiatry & Neuroscience: JPN 39(6), 417–427 (2014)CrossRefGoogle Scholar
  3. 3.
    Jbabdi, S., Woolrich, M.W., Andersson, J.L.R., Behrens, T.E.J.: A Bayesian framework for global tractography. NeuroImage 37(1), 116–129 (2007)CrossRefGoogle Scholar
  4. 4.
    Lazar, M.: Mapping brain anatomical connectivity using white matter tractography. NMR in Biomedicine 23(7), 821–835 (2010)CrossRefGoogle Scholar
  5. 5.
    Lebel, C., Gee, M., Camicioli, R., Wieler, M., Martin, W., Beaulieu, C.: Diffusion tensor imaging of white matter tract evolution over the lifespan. NeuroImage 60(1), 340–352 (2012)CrossRefGoogle Scholar
  6. 6.
    Mori, S., Oishi, K., Jiang, H., Jiang, L., Li, X., Akhter, K., Hua, K., Faria, A.V., Mahmood, A., Woods, R., Toga, A., Pike, G., Neto, P., Evans, A., Zhang, J., Huang, H., Miller, M., van Zijl, P., Mazziotta, J.: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. NeuroImage 40(2), 570–582 (2008)CrossRefGoogle Scholar
  7. 7.
    Shahand, S., Benabdelkader, A., Jaghoori, M.M., al Mourabit, M., Huguet, J., Caan, M.W.A., van Kampen, A.H.C., Olabarriaga, S.D.: A Data-Centric Neuroscience Gateway: Design, Implementation, and Experiences. Concurrency and Computation: Practice and Experience 27(2), 489–506 (2015)CrossRefGoogle Scholar
  8. 8.
    Woolrich, M.W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann, C., Jenkinson, M., Smith, S.M.: Bayesian analysis of neuroimaging data in FSL. NeuroImage 45(1), S173–S186 (2009)Google Scholar
  9. 9.
    Yendiki, A., Panneck, P., Srinivasan, P., Stevens, A., Zöllei, L., Augustinack, J., Wang, R., Salat, D., Ehrlich, S., Behrens, T., Jbabdi, S., Gollub, R., Fischl, B.: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Frontiers in Neuroinformatics 5(23), 1–12 (2011)Google Scholar
  10. 10.
    Zhang, W., Olivi, A., Hertig, S., Zijl, P.V., Mori, S.: Automated fiber tracking of human brain white matter using diffusion tensor imaging. Neuroimage 42(2), 771–777 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jalmar Teeuw
    • 1
    Email author
  • Matthan W. A. Caan
    • 1
  • Silvia D. Olabarriaga
    • 1
  1. 1.Academic Medical Center AmsterdamAmsterdamThe Netherlands

Personalised recommendations