Cellular and Animal Models of Cerebellar Disorders: Staggerer Mouse

  • N. Morellini
  • A. M. Lohof
  • R. M. Sherrard
  • J. Mariani
Chapter

Abstract

The staggerer mutant mouse carries a spontaneous mutation in the ligand-binding domain of the rora gene. RORα is expressed in many tissues and its loss leads to diverse abnormalities. In the cerebellum of staggerer mice, there is severe early degeneration of Purkinje cells and associated death of their afferent neurons (granule and olivary neurons). Thus staggerer mice have atrophic cerebella and associated severe ataxia. In contrast, although heterozygote staggerer mice develop apparently normally, there is premature Purkinje cell atrophy and death in adulthood. Given that recent links have been demonstrated between RORα and spinocerebellar ataxia and autism spectrum disorders, the staggerer mouse is a particularly interesting model for cerebellar pathologies.

Keywords

Purkinje Cell Neuroprotection Autism Spectrum Disorders Anti-Inflammatory Action Orphan Nuclear Receptor Spinocerebellar Ataxia 

References

  1. Blatt GJ, Eisenman LM (1985) A qualitative and quantitative light microscopic study of the inferior olivary complex in the adult staggerer mutant mouse. J Neurogenet 2:51–66CrossRefPubMedGoogle Scholar
  2. Boukhtouche F, Doulazmi M, Frederic F, Dusart I, Brugg B, Mariani J (2006) RORalpha, a pivotal nuclear receptor for Purkinje neuron survival and differentiation: from development to ageing. Cerebellum 5:97–104CrossRefPubMedGoogle Scholar
  3. Caston J, Hilber P, Chianale C, Mariani J (2003) Effect of training on motor abilities of heterozygous staggerer mutant (Rora(+)/Rora(sg)) mice during aging. Behav Brain Res 141:35–42CrossRefPubMedGoogle Scholar
  4. Chen X, Heck N, Lohof AM, Rochefort C, Morel MP, Wehrlé R, Doulazmi M, Cannaya V, Avci HX, Mariani J, Rondi-Reig L, Vodjdani G, Sherrard RM, Sotelo C, Dusart I (2013) Mature Purkinje cells require the retinoic acid-related orphan receptor alpha (RORα) to maintain climbing fiber monoinnervation and other adult characteristics. J Neurosci 33(22):9546–9562CrossRefPubMedGoogle Scholar
  5. Doulazmi M, Frederic F, Lemaigre-Dubreuil Y, Hadj-Sahraoui N, Delhaye-Bouchaud N, Mariani J (1999) Cerebellar Purkinje cell loss during life span of the heterozygous staggerer mouse (Rora(+)/Rora(sg)) is gender-related. J Comp Neurol 411:267–273CrossRefPubMedGoogle Scholar
  6. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V, Dager SR, Dickson PE, Estes AM, Goldowitz D, Heck DH, Kemper TL, King BH, Martin LA, Millen KJ, Mittleman G, Mosconi MW, Persico AM, Sweeney JA, Webb SJ, Welsh JP (2012) Consensus paper: pathological role of the cerebellum in Autism. Cerebellum 11:777–807CrossRefPubMedPubMedCentralGoogle Scholar
  7. Hadj-Sahraoui N, Frederic F, Zanjani H, Delhaye-Bouchaud N, Herrup K, Mariani J (2001) Progressive atrophy of cerebellar Purkinje cell dendrites during aging of the heterozygous staggerer mouse (Rora(+/sg)). Dev Brain Res 126:201–209CrossRefGoogle Scholar
  8. Hamilton BA, Frankel WN, Kerrebrock AW, Hawkins TL, FitzHugh W, Kusumi K, Russell LB, Mueller KL, van Berkel V, Birren BW, Kruglyak L, Lander ES (1996) Disruption of the nuclear hormone receptor RORalpha in staggerer mice. Nature 379:736–739CrossRefPubMedGoogle Scholar
  9. Herrup K (1983) Role of staggerer gene in determining cell number in cerebellar cortex. I. Granule cell death is an indirect consequence of staggerer gene action. Brain Res 313:267–274CrossRefPubMedGoogle Scholar
  10. Janmaat S, Akwa Y, Doulazmi M, Bakouche J, Gautheron V, Liere P, Eychenne B, Pianos A, Luiten P, Groothuis T, Baulieu EE, Mariani J, Sherrard RM, Frederic F (2011) Age-related Purkinje cell death is steroid dependent: RORalpha haplo-insufficiency impairs plasma and cerebellar steroids and Purkinje cell survival. Age 33:565–578CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jarvis CI, Staels B, Brugg B, Lemaigre-Dubreuil Y, Tedgui A, Mariani J (2002) Age-related phenotypes in the staggerer mouse expand the RORalpha nuclear receptor’s role beyond the cerebellum. Mol Cell Endocrinol 186(1):1–5CrossRefPubMedGoogle Scholar
  12. Journiac N, Jolly S, Jarvis C, Gautheron V, Rogard M, Trembleau A, Blondeau JP, Mariani J, Vernet-der Garabedian B (2009) The nuclear receptor ROR(alpha) exerts a bi-directional regulation of IL-6 in resting and reactive astrocytes. Proc Natl Acad Sci U S A 106:21365–21370CrossRefPubMedPubMedCentralGoogle Scholar
  13. Lalonde R, Manseau M, Botez MI (1988) Spontaneous alternation and exploration in staggerer mutant mice. Behav Brain Res 27:273–276CrossRefPubMedGoogle Scholar
  14. Lalonde R, Filali M, Bensoula AN, Lestienne F (1996a) Sensorimotor learning in three cerebellar mutant mice. Neurobiol Learn Mem 65:113–120CrossRefPubMedGoogle Scholar
  15. Lalonde R, Filali M, Bensoula AN, Monnier C, Guastavino JM (1996b) Spatial learning in a Z-maze by cerebellar mutant mice. Physiol Behav 59:83–86CrossRefPubMedGoogle Scholar
  16. Mariani J, Changeux JP (1980) Multiple innervation of Purkinje cells by climbing fibers in the cerebellum of the adult staggerer mutant mouse. J Neurobiol 11:41–50CrossRefPubMedGoogle Scholar
  17. Mitsumura K, Hosoi N, Furuya N, Hirai H (2011) Disruption of metabotropic glutamate receptor signalling is a major defect at cerebellar parallel fibre–Purkinje cell synapses in staggerer mutant mice. J Physiol 589:3191–3209CrossRefPubMedPubMedCentralGoogle Scholar
  18. Roffler-Tarlov S, Herrup K (1981) Quantitative examination of the deep cerebellar nuclei in the staggerer mutant mouse. Brain Res 215:49–59CrossRefPubMedGoogle Scholar
  19. Sarachana T, Xu M, Wu R, Hu VW (2011) Sex hormones in autism: androgens and estrogens differentially and reciprocally regulate RORA, a novel candidate gene for autism. PLoS One 6:e17116CrossRefPubMedPubMedCentralGoogle Scholar
  20. Serra HG, Duvick L, Zu T, Carlson K, Stevens S, Jorgensen N, Lysholm A, Burright E, Zoghbi HY, Clark HB, Andresen JM, Orr HT (2006) RORalpha-mediated Purkinje cell development determines disease severity in adult SCA1 mice. Cell 127:697–708CrossRefPubMedGoogle Scholar
  21. Sidman RL, Lane PW, Dickie MM (1962) Staggerer, a new mutation in the mouse affecting the cerebellum. Science 137:610–612CrossRefPubMedGoogle Scholar
  22. Sotelo C, Changeux JP (1974) Transsynaptic degeneration ‘en cascade’ in the cerebellar cortex of staggerer mutant mice. Brain Res 67:519–526CrossRefPubMedGoogle Scholar
  23. Vogel MW, Sinclair M, Qiu D, Fan H (2000) Purkinje cell fate in staggerer mutants: agenesis versus cell death. J Neurobiol 42:323–337CrossRefPubMedGoogle Scholar
  24. Yoon CH (1972) Developmental mechanism for changes in cerebellum of “staggerer” mouse, a neurological mutant of genetic origin. Neurology 22:743–754CrossRefPubMedGoogle Scholar
  25. Zanjani HS, Mariani J, Herrup K (2007) Cell loss in the inferior olive of the staggerer mutant mouse is an indirect effect of the gene. J Neurogenet 21(4):257–269CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • N. Morellini
    • 1
  • A. M. Lohof
    • 1
  • R. M. Sherrard
    • 1
  • J. Mariani
    • 1
    • 2
  1. 1.Sorbonne Universités UPMC-Univ Paris 6 and CNRS, IBPS-B2A and DHU FAST, UMR8256 Biological Adaptation and AgeingParisFrance
  2. 2.Institut de la Longévité, Hôpital Charles FoixIvry-sur-SeineFrance

Personalised recommendations