Spectrum-Sculpting-Aided PU-Claiming in OFDMA Cognitive Radio Networks

  • Yi RenEmail author
  • Chao Wang
  • Dong Liu
  • Fuqiang Liu
  • Erwu Liu
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 156)


We consider a cognitive radio network where the primary user (PU) supports applications with multiple quality of service (QoS) requirements via orthogonal frequency division multiple access (OFDMA). To let the secondary users (SUs) be aware of PU’s QoS level, and hence provide PU with sufficient protection, we propose a spectrum-sculpting-aided PU-claiming scheme that does not demand strict PU-SU synchronization. Specifically, the PU deliberately inserts one zero-subcarrier into its subcarriers, the position of which represents the QoS requirement of the PU. Through a two-step sensing procedure, each SU then can estimate the QoS requirement and adjust its sensing or accessing strategies accordingly. Simulation results exhibit the advantages of the proposed scheme, in terms of both weighted received interference (WRI) and SU’s throughput\(^1\).


Spectrum sculpting Cognitive radio Multi-QoS OFDM PU-claiming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liang, Y.-C., Chen, K.-C., et al.: Cognitive radio networking and communications: An overview. IEEE Trans. Veh. Technol. 60(7), 3386–3407 (2011)CrossRefGoogle Scholar
  2. 2.
    Alasti, M., Neekzad, B., Hui, J., Vannithamby, R.: Quality of service in WiMAX and LTE networks. IEEE Commun. Mag. 48(5), 104–111 (2010)CrossRefGoogle Scholar
  3. 3.
    Hoang, A.T., Liang, Y.-C., Islam, M.H.: Maximizing throughput of cognitive radio networks with limited primary users’ cooperation. In: Proc. IEEE ICC (2007)Google Scholar
  4. 4.
    Zhang, W., Yeo, C.K., Li, Y.: A MAC sensing protocol design for data transmission with more protection to primary users. IEEE Trans. Mobile Comput. 12(4), 621–632 (2013)CrossRefGoogle Scholar
  5. 5.
    Hoang, A.T., Liang, Y.-C., Islam, M.H.: Power control and channel allocation in cognitive radio networks with primary users’ cooperation. IEEE Trans. Mobile Comput. 9(3), 348–360 (2010)CrossRefGoogle Scholar
  6. 6.
    Mahmoud, H.A., Yücek, T., Arslan, H.: OFDM for cognitive radio: merits and challenges. IEEE Wireless Commun. Mag. 16(2), 6–15 (2009)CrossRefGoogle Scholar
  7. 7.
    Liang, Y.-C., Zeng, Y., et al.: Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans. Wireless Commun. 7(4), 1326–1337 (2008)CrossRefGoogle Scholar
  8. 8.
    IEEE 802.16 Working Group. IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed Broadband Wireless Access Systems Amendment3: Advanced Air Interface, IEEE Std, vol. 802 (2011)Google Scholar
  9. 9.
    IEEE 802.11-2007: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, IEEE 802.11 LAN Standards (2007)Google Scholar
  10. 10.
    López-Benıtez, M., Casadevall, F.: Time-dimension models of spectrum usage for the analysis, design and simulation of cognitive radio networks. IEEE Trans. Veh. Technol. 62(5), 2091–2104 (2013)CrossRefGoogle Scholar

Copyright information

© Institute for Computer Science, Social Informatics and Telecommunications Engineering 2015

Authors and Affiliations

  • Yi Ren
    • 1
    Email author
  • Chao Wang
    • 1
  • Dong Liu
    • 1
  • Fuqiang Liu
    • 1
  • Erwu Liu
    • 1
  1. 1.School of Electronic and Information EngineeringTongji UniniversityShanghaiPeople’s Republic of China

Personalised recommendations