Advertisement

Polynomial Interrupt Timed Automata

  • Béatrice Bérard
  • Serge Haddad
  • Claudine Picaronny
  • Mohab Safey El Din
  • Mathieu Sassolas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9328)

Abstract

Interrupt Timed Automata (ITA) form a subclass of stopwatch automata where reachability and some variants of timed model checking are decidable even in presence of parameters. They are well suited to model and analyze real-time operating systems. Here we extend ITA with polynomial guards and updates, leading to the class of polynomial ITA (polITA). We prove that reachability is decidable in 2EXPTIME on polITA, using an adaptation of the cylindrical decomposition method for the first-order theory of reals. Compared to previous approaches, our procedure handles parameters and clocks in a unified way. We also obtain decidability for the model checking of a timed version of CTL and for reachability in several extensions of polITA.

Keywords

Model Check Hybrid Automaton Triangular System Reachability Problem Time Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Information and Computation 104, 2–34 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. TCS 138, 3–34 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems. Proceedings of the IEEE 88(7), 971–984 (2000)CrossRefGoogle Scholar
  5. 5.
    Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having piecewise-constant derivatives. TCS 138(1), 35–65 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer (2006)Google Scholar
  7. 7.
    Ben-Or, M., Kozen, D., Reif, J.: The complexity of elementary algebra and geometry. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, STOC 1984, pp. 457–464. ACM (1984)Google Scholar
  8. 8.
    Bérard, B., Haddad, S.: Interrupt timed automata. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 197–211. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  9. 9.
    Bérard, B., Haddad, S., Jovanović, A., Lime, D.: Parametric interrupt timed automata. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp. 59–69. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  10. 10.
    Bérard, B., Haddad, S., Sassolas, M.: Interrupt timed automata: Verification and expressiveness. Formal Methods in System Design 40(1), 41–87 (2012)CrossRefzbMATHGoogle Scholar
  11. 11.
    Bérard, B., Haddad, S., Picaronny, C., Safey El Din, M., Sassolas, M.: Polynomial interrupt timed automata. CoRR abs/1504.04541, April 2015Google Scholar
  12. 12.
    Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  13. 13.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: Brakhage, H. (ed.) Automata Theory and Formal Languages 2nd GI Conference, vol. 33, pp. 134–183. Springer, Heidelberg (1975)Google Scholar
  14. 14.
    Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.): HS 1991 and HS 1992. LNCS, vol. 736. Springer, Heidelberg (1993) Google Scholar
  15. 15.
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hong, H., Din, M.S.E.: Variant quantifier elimination. Journal of Symbolic Computation 47(7), 883–901 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. MCSS 13(1), 1–21 (2000)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Miller, D.J.: Constructing o-minimal structures with decidable theories using generic families of functions from quasianalytic classes. ArXiv e-prints 1008.2575, August 2010Google Scholar
  19. 19.
    Miller, J.S.: Decidability and complexity results for timed automata and semi-linear hybrid automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 296–309. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  20. 20.
    Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Inf. Process. Lett. 91(5), 233–244 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Béatrice Bérard
    • 1
    • 4
  • Serge Haddad
    • 2
    • 4
    • 5
  • Claudine Picaronny
    • 2
    • 4
    • 5
  • Mohab Safey El Din
    • 1
    • 4
    • 5
  • Mathieu Sassolas
    • 3
  1. 1.Sorbonne Université, Université P. & M. Curie, LIP6, ParaSol Project, UMR 7606ParisFrance
  2. 2.École Normale Supérieure de Cachan, LSV, UMR 8643, INRIACachanFrance
  3. 3.Université Paris-Est, LACLCréteilFrance
  4. 4.CNRSCachanFrance
  5. 5.INRIA, Paris-Rocquencourt Center, PolSys ProjectParisFrance

Personalised recommendations