International Workshop on Reachability Problems

Reachability Problems pp 1-6 | Cite as

Reasoning About Cost-Utility Constraints in Probabilistic Models

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9328)

Abstract

Various types of automata models with weights attached to the states and/or transitions have been introduced to model and analyze the resource-awareness and other quantitative phenomena of systems. In this context, weight accumulation appears as a natural concept to reason about cost and utility measures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  2. 2.
    Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quantiles. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 285–299. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  3. 3.
    Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Weight monitoring with linear temporal logic: complexity and decidability. In: 23rd Conference on Computer Science Logic and the 29th Symposium on Logic In Computer Science (CSL-LICS), pp. 11:1–11:10. ACM (2014)Google Scholar
  4. 4.
    Bauer, S.S., Juhl, L., Larsen, K.G., Srba, J., Legay, A.: A logic for accumulated-weight reasoning on multiweighted modal automata. In: 6th International Symposium on Theoretical Aspects of Software Engineering (TASE), pp. 77–84. IEEE Computer Society (2012)Google Scholar
  5. 5.
    Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifications with accumulative values. In: 26th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 43–52. IEEE Computer Society (2011)Google Scholar
  6. 6.
    Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Multiple mean-payoff objectives in Markov decision processes. Logical Methods in Computer Science 10(1) (2014)Google Scholar
  7. 7.
    Bruyère, V., Filiot, E., Randour, M., Raskin, J.-F.: Meet your expectations with guarantees: Beyond worst-case synthesis in quantitative games. In: 31st International Symposium on Theoretical Aspects of Computer Science (STACS), Leibniz International Proceedings in Informatics (LIPIcs), vol. 25, pp. 199–213. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2014)Google Scholar
  8. 8.
    Chakraborty, S., Katoen, J.-P.: Parametric LTL on markov chains. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 207–221. Springer, Heidelberg (2014) Google Scholar
  9. 9.
    Chatterjee, K., Doyen, L.: Energy and mean-payoff parity markov decision processes. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 206–218. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  10. 10.
    Chatterjee, K., Doyen, L.: Energy parity games. Theoretical Computer Science 458, 49–60 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chatterjee, K., Doyen, L., Randour, M., Raskin, J.-F.: Looking at mean-payoff and total-payoff through windows. Information and Computation 242, 25–52 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: Measuring and synthesizing systems in probabilistic environments. Journal of the ACM 62(1), 9:1–9:34 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of the ACM 42(4), 857–907 (1995)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    de Alfaro, L.: Formal Verification of Probabilistic Systems. Ph.D. thesis, Stanford University, Department of Computer Science (1997)Google Scholar
  15. 15.
    Dräger, K., Forejt, V., Kwiatkowska, M., Parker, D., Ujma, M.: Permissive controller synthesis for probabilistic systems. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 531–546. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  16. 16.
    Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective model checking of Markov decision processes. Logical Methods in Computer Science 4(4) (2008)Google Scholar
  17. 17.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer (1993)Google Scholar
  18. 18.
    Haase, C., Kiefer, S.: The odds of staying on budget. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 234–246. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  19. 19.
    Juhl, L., Guldstrand Larsen, K., Raskin, J.-F.: Optimal bounds for multiweighted and parametrised energy games. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol. 8051, pp. 244–255. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  20. 20.
    Krähmann, D., Schubert, J., Baier, C., Dubslaff, C.: Ratio and weight quantiles. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 344–356. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  21. 21.
    Laroussinie, F., Sproston, J.: Model checking durational probabilistic systems. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 140–154. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  22. 22.
    Randour, M., Raskin, J.-F., Sankur, O.: Percentile queries in multi-dimensional markov decision processes. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 123–139. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  23. 23.
    Tomita, T., Hiura, S., Hagihara, S., Yonezaki, N.: A temporal logic with mean-payoff constraints. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 249–265. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  24. 24.
    Ummels, M., Baier, C.: Computing quantiles in markov reward models. In: Pfenning, F. (ed.) FOSSACS 2013 (ETAPS 2013). LNCS, vol. 7794, pp. 353–368. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  25. 25.
    Velner, Y., Chatterjee, K., Doyen, L., Henzinger, T.A., Rabinovich, A.M., Raskin, J.-F.: The complexity of multi-mean-payoff and multi-energy games. Information and Computation 241, 177–196 (2015)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    von Essen, C., Jobstmann, B.: Synthesizing efficient controllers. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 428–444. Springer, Heidelberg (2012) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Computer ScienceTechnische Universität DresdenDresdenGermany

Personalised recommendations