Remote Visualization Techniques for Medical Imaging Research and Image-Guided Procedures

  • Peter Kohlmann
  • Tobias Boskamp
  • Alexander Köhn
  • Christian Rieder
  • Andrea Schenk
  • Florian Link
  • Uwe Siems
  • Marcus Barann
  • Jan-Martin Kuhnigk
  • Daniel Demedts
  • Horst K. Hahn
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

There has been a tremendous increase in medical image computing research and development over the last decade. This trend continues to gain further speed, driven by the sheer amount of multimodal medical image data but also by the broad spectrum of computer-assisted applications. At the same time, user expectations with respect to diagnostic accuracy, robustness, speed, automation, workflow efficiency, broad availability, as well as intuitive use have reached a high level already. More recently, cloud computing has entered the field of medical imaging, providing means for more flexible workflows including the support of mobile devices and even a medical imaging equivalent of the App Store paradigm. This paper discusses requirements for modern medical software systems with a focus on image analysis and visualization. It provides examples from different areas of application covering collaborative multi-center imaging trials with online reading and advanced analysis as well as an intraoperative augmented-reality scenario for translating liver surgery planning data directly into the operating room through a mobile multi-touch device. A combination of remote rendering and visualization techniques with an efficient modular development framework (MeVisLab) is presented as a basis for fast implementation, early evaluation, and iterative optimization in these applications.

References

  1. 1.
    Bamberg, F., Kauczor, H.U., Weckbach, S., et al. Whole-body MR imaging in the German National Cohort: rationale, design, and technical background. Radiology 277(1), 206–220 (2015)CrossRefGoogle Scholar
  2. 2.
    Bethel, W.: Visualizaton dot com. Comput. Graph. Appl. 20(3), 17–20 (2000)CrossRefGoogle Scholar
  3. 3.
    Bitter, I., van Uitert, R., Wolf, I., et al. Comparison of four freely available frameworks for image processing and visualization that use ITK. IEEE Trans. Vis. Comput. Graph. 13(3), 483–493 (2007)CrossRefGoogle Scholar
  4. 4.
    Caban, J.J., Joshi, A., Nagy, P.: Rapid development of medical imaging tools with open-source libraries. J. Digit Imag. 20(Suppl. 1), 83–93 (2007)CrossRefGoogle Scholar
  5. 5.
    DCMTK - DICOM Toolkit. http://dcmtk.org/dcmtk.php.en (2015). Accessed 10 Nov 2015
  6. 6.
    dcm4che. http://www.dcm4che.org (2015). Accessed 10 Nov 2015
  7. 7.
    Engel, K., Sommer, O., Ertl, T.: Framework for interactive hardware accelerated remote 3D-visualization. In: de Leeuw, W., van Liere, R.: (eds.) Data Visualization, pp. 167–177. Springer, Vienna (2000)Google Scholar
  8. 8.
    Fette, I., Melnikov, A.: The WebSocket Protocol. http://tools.ietf.org/html/rfc6455 (2011). Accessed 10 Nov 2015
  9. 9.
    Hahn, H.K., Link, F., Peitgen, H.-O.: Concepts for rapid application prototyping in medical image analysis and visualization. In: Proceedings of Simulation and Visualization, pp. 283–298. SCS Publishing House, Ghent (2003)Google Scholar
  10. 10.
    Hendin, O., John, N.W., Shochet, O.: Medical volume rendering over the WWW using VRML and JAVA. In: Westwood, J.D., Hoffman, H.M., Stredney, D., et al. (eds.) Proceedings of Medicine Meets Virtual Reality, vol. 6, pp. 34–40. IOS Press and Ohmsha, Amsterdam (1998)Google Scholar
  11. 11.
    Introducing JSON. http://www.json.org (2015). Accessed 10 Nov 2015
  12. 12.
    Insight Segmentation and Registration Toolkit (2015). www.itk.org. Accessed 10 Nov 2015
  13. 13.
    Kagadis, G.C., Kloukinas, C., Moore, K., et al.: Cloud computing in medical imaging. Med. Phys. 40(7), 070901 (2013)CrossRefGoogle Scholar
  14. 14.
    Köhn, A., Matsuyama, R., Endo, I., et al. Liver surgery data and augmented reality in the operation room: experiences using a tablet device. Int. J. Comput. Assist. Radiol. Surg. 9(Supplement 1), 111 (2014)Google Scholar
  15. 15.
    König, M., Spindler, W., Rexilius, J., et al. Embedding VTK and ITK into a visual programming and rapid prototyping platform. In: Cleary, K.R., Galloway Jr, R.L. (eds.) Proceedings of SPIE Medical Imaging, vol. 6141, San Diego, 2006, pp. 796–806 (2006)Google Scholar
  16. 16.
    Lamberti, F., Sanna, A.: A streaming-based solution for remote visualization of 3D graphics on mobile devices. IEEE Tran Vis Comput Graph 13(2), 247–260 (2007)CrossRefGoogle Scholar
  17. 17.
    Link, F., König, M., Peitgen, H.-O.: Multi-resolution volume rendering with per object shading. In: Kobbelt, L., Kuhlen, T., Aach, T., et al. (eds.) Proceedings of Vision, Modeling, and Visualization, pp. 185–191. AKA, Berlin (2006)Google Scholar
  18. 18.
    Lippert, L., Gross, M.H., Kurmann, C.: Compression domain volume rendering for distributed environments. Comput. Graph. Forum 16(3), C95–C107 (1997)CrossRefGoogle Scholar
  19. 19.
    Ma, K.-L., Camp, D.M.: High performance visualization of time-varying volume data over a wide-area network. In: Proceedings of Supercomputing ’00. IEEE Computer Society, Los Alamitos (2000)Google Scholar
  20. 20.
    Matsuyama, R., Taniguchi, K., Mori, R, et al.: IPad guided right hemihepatectomy with a new application designed specifically for navigation surgery: initially clinical experience for perihilar cholangiocarcinoma. In: IHPBA World Congress 2014 (2014)Google Scholar
  21. 21.
    MeVisLab. http://www.mevislab.de (2015). Accessed 10 Nov 2015
  22. 22.
    MySQL. http://www.mysql.com (2015). Accessed 10 Nov 2015
  23. 23.
    OpenGL. http://www.opengl.org (2015). Accessed 10 Nov 2015
  24. 24.
    OpenGL Vizserver. http://www.sgi.com/products/software/vizserver (2015). Accessed 10 Nov 2015
  25. 25.
    Ormerod, D.F., Ross, B., Naluai-Cecchini, A.: Use of an augmented reality display of patient monitoring data to enhance anesthesiologists’ response to abnormal clinical events. Stud. Health Technol. Inform. 94, 248–250 (2003)Google Scholar
  26. 26.
    Paul, B., Ahern, S., Bethel, E.W., et al. Chromium renderserver: scalable and open remote rendering infrastructure. IEEE Trans. Vis. Comput. Graph. 14(3), 627–639 (2008)CrossRefGoogle Scholar
  27. 27.
    Prior, F.W., Erickson, B.J., Tarbox, L.: Open source software projects of the caBIG In Vivo Imaging Workspace Software special interest group. J. Digit Imag. 20(Suppl. 1), 94–100 (2007)CrossRefGoogle Scholar
  28. 28.
    Rassweiler, J.J., Müller, M., Fangerau, M., et al. iPad-assisted percutaneous access to the kidney using marker-based navigation: initial clinical experience. Eur Urol 61(3), 628–631 (2012)CrossRefGoogle Scholar
  29. 29.
    Reitinger, B:, Bornik, A., Beichel, R., et al. Tools for augmented-reality-based liver resection planning. In: Galloway Jr, R.L. (ed.) Proceedings of SPIE Medical Imaging, vol. 5367, San Diego, pp. 88–99 (2004)Google Scholar
  30. 30.
    Richardson, T., Stafford-Fraser, Q., Wood, K.R., et al. Virtual network computing. IEEE Internet Comput. 2(1), 33–38 (1998)CrossRefGoogle Scholar
  31. 31.
    Rieder, C., Palmer, S., Link, F., et al.: A shader framework for rapid prototyping of GPU-based volume rendering. Comput Graph Forum 30(3), 1031–1040 (2011)CrossRefGoogle Scholar
  32. 32.
    Ritter, F., Boskamp, T., Homeyer, A., et al.: Medical image analysis: a visual approach. IEEE Pulse 2(6), 60–70 (2011)CrossRefGoogle Scholar
  33. 33.
    Rost, R.J., Licea-Kane, B.M., Ginsburg, D., et al.: OpenGL Shading Language, 3rd ed. Addison-Wesley Professional, Boston (2009)Google Scholar
  34. 34.
    SATMED E-Health Platform. http://satmed.lu (2015). Accessed 10 Nov 2015
  35. 35.
    Schenk, A., Haemmerich, D., Preusser, T.: Planning of image-guided interventions in the liver. IEEE Pulse 2(5), 48–55 (2011)CrossRefGoogle Scholar
  36. 36.
    SGI Open Inventor. http://oss.sgi.com/projects/inventor (2015). Accessed 10 Nov 2015
  37. 37.
    Stegmaier, S., Magallón, E.T.: A generic solution for hardware-accelerated remote visualization. In: Ebert, D., Brunet, P., Navazo, I. (eds.) Proceedings of EG/IEEE TCVG Symposium on Visualization, pp. 87–94. ACM, New York (2002)Google Scholar
  38. 38.
  39. 39.
    VirtualGL. http://www.virtualgl.org (2015). Accessed 10 Nov 2015
  40. 40.
    Visualization Toolkit (VTK). http://www.vtk.org (2015). Accessed 10 Nov 2015
  41. 41.
    Weiler, F., Rieder, C., David, C.A., et al.: On the value of multi-volume visualization for preoperative planning of cerebral AVM surgery. In: Ropinski, T., Ynnerman, A., Botha, C.P., et al. (eds.) Proceedings or the Eurographics Workshop on Visual Computing for Biomedicine. Eurographics Association, Norrköping, pp. 49–56 (2012)Google Scholar
  42. 42.
    Yoon, I., Neumann, U.: Web-based remote rendering with IBRAC. Comput. Graph. Forum 19(3), 321–330 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Peter Kohlmann
    • 1
  • Tobias Boskamp
    • 2
  • Alexander Köhn
    • 1
  • Christian Rieder
    • 1
  • Andrea Schenk
    • 1
  • Florian Link
    • 2
  • Uwe Siems
    • 2
  • Marcus Barann
    • 2
  • Jan-Martin Kuhnigk
    • 1
  • Daniel Demedts
    • 1
  • Horst K. Hahn
    • 1
  1. 1.Fraunhofer MEVISBremenGermany
  2. 2.MeVis Medical Solutions AGBremenGermany

Personalised recommendations