muView: A Visual Analysis System for Exploring Uncertainty in Myocardial Ischemia Simulations

  • Paul Rosen
  • Brett Burton
  • Kristin Potter
  • Chris R. Johnson
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


In this paper we describe the Myocardial Uncertainty Viewer (muView or μView) system for exploring data stemming from the simulation of cardiac ischemia. The simulation uses a collection of conductivity values to understand how ischemic regions effect the undamaged anisotropic heart tissue. The data resulting from the simulation is multi-valued and volumetric, and thus, for every data point, we have a collection of samples describing cardiac electrical properties. μView combines a suite of visual analysis methods to explore the area surrounding the ischemic zone and identify how perturbations of variables change the propagation of their effects. In addition to presenting a collection of visualization techniques, which individually highlight different aspects of the data, the coordinated view system forms a cohesive environment for exploring the simulations. We also discuss the findings of our study, which are helping to steer further development of the simulation and strengthening our collaboration with the biomedical engineers attempting to understand the phenomenon.


  1. 1.
    Berger, W., Piringer, H., Filzmoser, P., Gröller, E.: Uncertainty-aware exploration of continuous parameter spaces using multivariate prediction. Comput. Graph. Forum 30(3), 911–920 (2011)CrossRefGoogle Scholar
  2. 2.
    Bordoloi, U.D., Kao, D.L., Shen, H.W.: Visualization techniques for spatial probability density function data. Data Sci. J. 3, 153–162 (2004)CrossRefGoogle Scholar
  3. 3.
    Clerc, L.: Directional differences of impulse spread in trabecular muscle from mammalian heart. J. Physiol. 255, 335–346 (1976)CrossRefGoogle Scholar
  4. 4.
    Djurcilov, S., Kim, K., Lermusiaux, P., Pang, A.: Visualizing scalar volumetric data with uncertainty. Comput. Graph. 26, 239–248 (2002)CrossRefGoogle Scholar
  5. 5.
    Feng, D., Kwock, L., Lee, Y., Taylor II, R.M.: Linked exploratory visualizations for uncertain mr spectroscopy data. SPIE Vis. Data Anal. 7530(4), 1–12 (2010)Google Scholar
  6. 6.
    Feng, D., Kwock, L., Lee, Y., Taylor II, R.M.: Matching visual saliency to confidence in plots of uncertain data. IEEE Trans. Vis. Comput. Graph. 16(6), 980–989 (2010)CrossRefGoogle Scholar
  7. 7.
    Fleischmann, K.E., Zègre-Hemsey, J., Drew, B.J.: The new universal definition of myocardial infarction criteria improves electrocardiographic diagnosis of acute coronary syndrome. J. Electrocardiol. 44, 69–73 (2011)CrossRefGoogle Scholar
  8. 8.
    Fout, N., Ma, K.L.: Fuzzy volume rendering. IEEE Trans. Vis. Comput. Graph. 18(12), 2335–2344 (2012)CrossRefGoogle Scholar
  9. 9.
    Geneser, S., Hinkle, J., Kirby, R., Wang, B., Salter, B., Joshi, S.: Quantifying variability in radiation dose due to respiratory-induced tumor motion. Med. Image Anal. 15(4), 640–649 (2011)CrossRefGoogle Scholar
  10. 10.
    Griethe, H., Schumann, H.: Visualization of uncertain data: methods and problems. In: Proceedings of Simulation and Visualization, pp. 143–156 (2006)Google Scholar
  11. 11.
    Haroz, S., Ma, K.L., Heitmann, K.: Multiple uncertainties in time-variant cosmological particle data. In: IEEE Pacific Visualization, pp. 207–214 (2008)Google Scholar
  12. 12.
    Henriquez, C.: Simulating the electrical behaviour of cardiac tissue using the bidomain model. Crit. Rev. Biomed. Eng. 21(1), 1–77 (1993)MathSciNetGoogle Scholar
  13. 13.
    Hopenfeld, B., Stinstra, J., Macleod, R.: Mechanism for st depression associated with contiguous subendocardial ischemia. J. Cardiovasc. Electrophysiol. 15(10), 1200–1206 (2004)CrossRefGoogle Scholar
  14. 14.
    Jiao, F., Phillips, J., Gur, Y., Johnson, C.: Uncertainty visualization in HARDI based on ensembles of ODFs. In: IEEE Pacific Visualization, pp. 193–200 (2012)Google Scholar
  15. 15.
    Johnson, C.: Numerical methods for bioelectric field problems. In: Bronzino, J. (ed.) The Biomedical Engineering Handbook, pp. 161–188. CRC, Boca Ratan (1995)Google Scholar
  16. 16.
    Johnson, C.R.: Top scientific visualization research problems. IEEE Comput. Graph. Appl. Mag. 24(4), 13–17 (2004)CrossRefGoogle Scholar
  17. 17.
    Johnson, C., Sanderson, A.: Next step: visualizing errors and uncertainty. IEEE Comput. Graph. Appl. Mag. 23(5), 6–10 (2003)CrossRefGoogle Scholar
  18. 18.
    Johnson, C., MacLeod, R., Matheson, M.: Computer simulations reveal complexity of electrical activity in the human thorax. Comput. Phys. 6, 230–237 (1992)CrossRefGoogle Scholar
  19. 19.
    Johnson, C., MacLeod, R., Matheson, M.: Computational medicine: bioelectric field problems. IEEE Comput. 26(26), 59–67 (1993)CrossRefGoogle Scholar
  20. 20.
    Johnston, P.R.: A cylindrical model for studying subendocardial ischaemia in the left ventricle. Math. Biosci. 186, 43–61 (2003)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Johnston, P.R., Kilpatrick, D.: The effect of conductivity values on st segment shift in subendocardial ischaemia. IEEE Trans. Biomed. Eng. 50, 150–158 (2003)CrossRefGoogle Scholar
  22. 22.
    Jones, D.K.: Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI. Magn. Reson. Med. 49, 7–12 (2003)CrossRefGoogle Scholar
  23. 23.
    Jospeh, A.J., Lodha, S.K., Renteria, J.C., Pang, A.: Uisurf: Visualizing uncertainty in isosurfaces. In: Computer Graphics and Imaging, pp. 184–191 (1999)Google Scholar
  24. 24.
    Kao, D., Dungan, J.L., Pang, A.: Visualizing 2d probability distributions from eos satellite image-derived data sets: a case study. In: IEEE Visualization Conference, pp. 457–561 (2001)Google Scholar
  25. 25.
    Kao, D., Luo, A., Dungan, J.L., Pang, A.: Visualizing spatially varying distribution data. In: Information Visualisation, pp. 219–225 (2002)Google Scholar
  26. 26.
    Kao, D., Kramer, M., Luo, A., Dungan, J., Pang, A.: Visualizing distributions from multi-return lidar data to understand forest structure. Cartogr. J. 42(1), 35–47 (2005)CrossRefGoogle Scholar
  27. 27.
    Kruskal, J., Wish, M.: Multidimensional scaling. Sage University Paper series on Quantitative Application in the Social Sciences, vol. 07-011. Sage Publication, Beverly Hills/London (1978)Google Scholar
  28. 28.
    Lawonn, K., Moench, T., Preim, B.: Streamlines for illustrative real-time rendering. Comput. Graph. Forum 32(3), 321–330 (2013)CrossRefGoogle Scholar
  29. 29.
    Lucieer, A.: Visualization for exploration of uncertainty related to fuzzy classification. In: IEEE International Conference on Geoscience and Remote Sensing, pp. 903–906 (2006)Google Scholar
  30. 30.
    Lundström, C., Ljung, P., Persson, A., Ynnerman, A.: Uncertainty visualization in medical volume rendering using probabilistic animation. IEEE Trans. Vis. Comput. Graph. 13(6), 1648–1655 (2007)CrossRefGoogle Scholar
  31. 31.
    Luo, A., Kao, D., Pang, A.: Visualizing spatial distribution data sets. In: Symposium on Data Visualization, pp. 29–38 (2003)Google Scholar
  32. 32.
    MacEachren, A.M., Robinson, A., Hopper, S., Gardner, S., Murray, R., Gahegan, M., Hetzler, E.: Visualizing geospatial information uncertainty: what we know and what we need to know. Cartogr. Geogr. Inf. Sci. 32(3), 139–160 (2005)CrossRefGoogle Scholar
  33. 33.
    MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, p. 14 (1967)MathSciNetMATHGoogle Scholar
  34. 34.
    Mathers, C.D., Fat, D.M., Boerma, J.T.: The global burden of disease: 2004 update. Technical Report, World Health Organization (2004)Google Scholar
  35. 35.
    Pang, A., Wittenbrink, C., Lodha., S.: Approaches to uncertainty visualization. Vis. Comput. 13(8), 370–390 (1997)Google Scholar
  36. 36.
    Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. 2(6), 559–572 (1901)CrossRefMATHGoogle Scholar
  37. 37.
    Pfaffelmoser, T., Reitinger, M., Westermann, R.: Visualizing the positional and geometrical variability of isosurfaces in uncertain scalar fields. Comput. Graph. Forum 30(3), 951–960 (2011)CrossRefGoogle Scholar
  38. 38.
    Pfaffelmoser, T., Mihai, M., Westermann, R.: Visualizing the variability of gradients in uncertain 2d scalar fields. IEEE Trans. Vis. Comput. Graph. 19(11), 1948–1961 (2013)CrossRefGoogle Scholar
  39. 39.
    Pöthkow, K., Heg, H.C.: Positional uncertainty of isocontours: condition analysis and probabilistic measures. IEEE Trans. Vis. Comput. Graph. PP(99), 1–15 (2010)Google Scholar
  40. 40.
    Pöthkow, K., Weber, B., Hege, H.C.: Probabilistic marching cubes. Comput. Graph. Forum 30(3), 931–940 (2011)CrossRefGoogle Scholar
  41. 41.
    Potter, K., Wilson, A., Bremer, P.T., Williams, D., Doutriaux, C., Pascucci, V., Johhson, C.R.: Ensemble-vis: a framework for the statistical visualization of ensemble data. In: IEEE Workshop on Knowledge Discovery from Climate Data: Prediction, Extremes, pp. 233–240 (2009)Google Scholar
  42. 42.
    Potter, K., Kniss, J., Riesenfeld, R., Johnson, C.: Visualizing summary statistics and uncertainty. In: Computer Graphics Forum (Proceedings of Eurovis 2010), vol. 29, pp. 823–831 (2010)Google Scholar
  43. 43.
    Potter, K., Kirby, R., Xiu, D., Johnson, C.: Interactive visualization of probability and cumulative density functions. Int. J. Uncertain. Quantif. 2(4), 397–412 (2012)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Rhodes, P.J., Laramee, R.S., Bergeron, R.D., Sparr, T.M.: Uncertainty visualization methods in isosurface rendering. In: Eurographics Short Papers, pp. 83–88 (2003)Google Scholar
  45. 45.
    Roberts, D.E., Scher, A.M.: Effects of tissue anisotropy on extracellular potential fields in canine myocardium in situ. Circ. Res. 50, 342–351 (1982)CrossRefGoogle Scholar
  46. 46.
    Roberts, D.E., Hersh, L.T., Scher, A.M.: Influence of cardiac fiber orientation on wavefront voltage, conduction velocity and tissue resistivity in the dog. Circ. Res. 44, 701–712 (1979)CrossRefGoogle Scholar
  47. 47.
    Rodgers, J.L., Nicewander, W.A.: Thirteen ways to look at the correlation coefficient. Am. Stat. 42(1), 59–66 (1988)CrossRefGoogle Scholar
  48. 48.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  49. 49.
    Sanyal, J., Zhang, S., Dyer, J., Mercer, A., Amburn, P., Moorhead, R.J.: Noodles: a tool for visualization of numerical weather model ensemble uncertainty. IEEE Trans. Vis. Comput. Graph. 16(6), 1421–1430 (2010)CrossRefGoogle Scholar
  50. 50.
    Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Sov. Math. Dokl. 4, 240–243 (1963)MATHGoogle Scholar
  51. 51.
    Sugar, C.A., Gareth, James, M.: Finding the number of clusters in a data set: An information theoretic approach. J. Am. Stat. Assoc. 98, 750–763 (2003)Google Scholar
  52. 52.
    Toyoshima, H., Ekmekci, A., Flamm, E., Mizuno, Y., Nagaya, T., Nakayama, R., Yamada, K., Prinzmetal, M.: Angina pectoris vii. The nature of st depression in acute myocardial ischaemia. Am. J. Cardiol. 13, 498–509 (1964)Google Scholar
  53. 53.
    Whitaker, R.T., Mirzargar, M., Kirby, R.M.: Contour boxplots: a method for characterizing uncertainty in feature sets from simulation ensembles. IEEE Trans. Vis. Comput. Graph. 19(12), 2713–2722 (2013)CrossRefGoogle Scholar
  54. 54.
    Xiu, D.: Efficient collocational approach for parametric uncertainty analysis. Commun. Comput. Phys. 2, 293–309 (2007)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Paul Rosen
    • 1
  • Brett Burton
    • 2
  • Kristin Potter
    • 3
  • Chris R. Johnson
    • 2
  1. 1.Department of Computer Science and EngineeringUniversity of South FloridaTampaUSA
  2. 2.Scientific Computing and Imaging InstituteUniversity of UtahSalt Lake CityUSA
  3. 3.University of Oregon460 Mckenzie Hall, 5246 University of OregonEugeneUSA

Personalised recommendations