Role Sets and Division of Work at Two Levels of Collective Agency: The Case of Blockmodeling a Multilevel (Inter-individual and Inter-organizational) Network

Part of the Methodos Series book series (METH, volume 12)


The chapter presents a blockmodeling analysis of multilevel (inter-individual and inter-organizational) networks. Several approaches are presented and used to blockmodel such networks. Each blockmodel represents a system of roles (White HC, Boorman SA, Breiger RL, Am J Sociol 81:730–780, 1976) and therefore a form of division of work that is likely to change over time in fields of organized collective action. Using a case study, we show that while the systems of roles are quite similar at both levels (core-periphery-like structures with bridging cores interpreted in terms of division of work between actors’ and organizations’ specialties, location, status, etc.), the roles are performed by units with different characteristics at different levels. The added value of this true multilevel analysis is to show how groups at different levels are connected. In the empirical case analyzed in the chapter, the division of work at the level of individuals and the division of work at the level of laboratories can complement and strengthen each other for some segments of the population, while this reinforcement does not work for other segments. For the same roles, the mix of specialties at one level is different from the mix of specialties at the other level, notably because the two levels do not manage the same resources. Thus, this analysis tracks the meeting of top-down and bottom-up pressures towards structural alignment between levels.


Multilevel networks Multilevel analysis Generalized blockmodeling Role sets Division of work 



Section “Multilevel Blockmodeling” and pars of section “Analysis of a Multilevel Network of Cancer Researchers in France” are a modified version of parts from Žiberna (2014, pp. 48–51). Reprinted from Social Networks, Vol 39, Aleš Žiberna, “Blockmodeling of Multilevel Networks,” 46–61, Copyright (2014), with permission from Elsevier.


  1. Anderson, C. J., Wasserman, S., & Faust, K. (1992). Building stochastic blockmodels. Social Networks, 14, 137–161.CrossRefGoogle Scholar
  2. Arabie, P., Boorman, S. A., & Levitt, P. R. (1978). Constructing blockmodels: How and why. Journal of Mathematical Psychology, 17, 21–63.CrossRefGoogle Scholar
  3. Batagelj, V., Doreian, P., & Ferligoj, A. (1992a). An optimizational approach to regular equivalence. Social Networks, 14, 121–135.CrossRefGoogle Scholar
  4. Batagelj, V., Ferligoj, A., & Doreian, P. (1992b). Direct and indirect methods for structural equivalence. Social Networks, 14, 63–90.CrossRefGoogle Scholar
  5. Batagelj, V., Ferligoj, A., & Doreian, P. (1998). Fitting pre-specified blockmodels. In C. Hayashi, K. Yajima, H. H. Bock, N. Ohsumi, Y. Tanaka, & Y. Baba (Eds.), Data science, classification, and related methods (pp. 199–206). Tokyo: Springer.CrossRefGoogle Scholar
  6. Batagelj, V., Mrvar, A., Ferligoj, A., & Doreian, P. (2004). Generalized blockmodeling with Pajek. Metodološki Zvezki, 1, 455–467.Google Scholar
  7. Bellotti, E. (2012). Getting funded. Multi-level network of physicists in Italy. Social Networks, 34, 215–229.CrossRefGoogle Scholar
  8. Boorman, S. A., & White, H. C. (1976). Social structure from multiple networks. II. Role structures. American Journal of Sociology, 81, 1384–1446.CrossRefGoogle Scholar
  9. Borgatti, S. P., & Everett, M. G. (1992). Regular blockmodels of multiway, multimode matrices. Social Networks, 14, 91–120.CrossRefGoogle Scholar
  10. Brass, D. J., Galaskiewicz, J., Greve, H. R., & Tsai, W. P. (2004). Taking stock of networks and organizations: A multilevel perspective. Academy of Management Journal, 47, 795–817.CrossRefGoogle Scholar
  11. Breiger, R. (1974). The duality of persons and groups. Social Forces, 53, 181–190.CrossRefGoogle Scholar
  12. Breiger, R., Boorman, S., & Arabie, P. (1975). Algorithm for clustering relational data with applications to social network analysis and comparison with multidimensional-scaling. Journal of Mathematical Psychology, 12, 328–383.CrossRefGoogle Scholar
  13. Brusco, M., & Steinley, D. (2011). A tabu-search heuristic for deterministic two-mode blockmodeling of binary network matrices. Psychometrika, 76, 612–633.CrossRefGoogle Scholar
  14. Brusco, M., Doreian, P., Steinley, D., & Satornino, C. B. (2013). Multiobjective blockmodeling for social network analysis. Psychometrika, 78, 498–525.CrossRefGoogle Scholar
  15. Burt, R. (1976). Positions in networks. Social Forces, 55, 93–122.CrossRefGoogle Scholar
  16. Doreian, P., Batagelj, V., & Ferligoj, A. (1994). Partitioning networks based on generalized concepts of equivalence. The Journal of Mathematical Sociology, 19, 1–27.CrossRefGoogle Scholar
  17. Doreian, P., Batagelj, V., & Ferligoj, A. (2004). Generalized blockmodeling of two-mode network data. Social Networks, 26, 29–53.CrossRefGoogle Scholar
  18. Doreian, P., Batagelj, V., & Ferligoj, A. (2005a). Generalized blockmodeling. New York: Cambridge University Press.Google Scholar
  19. Doreian, P., Batagelj, V., & Ferligoj, A. (2005b). Generalized blockmodeling. Cambridge: Cambridge University Press.Google Scholar
  20. Holland, P. W., Laskey, K. B., & Leinhardt, S. (1983). Stochastic blockmodels: First steps. Social Networks, 5, 109–137.CrossRefGoogle Scholar
  21. Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193–218.CrossRefGoogle Scholar
  22. Iacobucci, D., & Wasserman, S. (1990). Social networks with 2 sets of actors. Psychometrika, 55, 707–720.CrossRefGoogle Scholar
  23. Kronegger, L., Ferligoj, A., & Doreian, P. (2011). On the dynamics of national scientific systems. Quality and Quantity, 45, 989–1015.CrossRefGoogle Scholar
  24. Lazega, E., & Mounier, L. (2002). Interdependent entrepreneurs and the social discipline of their cooperation: A research programme for structural economic sociology in a society of organizations. In O. Favereau & E. Lazega (Eds.), Conventions and structures in economic organization (pp. 147–199). Cheltenham: Edward Elgar.Google Scholar
  25. Lazega, E., Mounier, L., Stofer, R., & Tripier, A. (2004). Discipline scientifique et discipline sociale: Réseaux de conseil, apprentissage collectif et innovation dans la recherche française sur le cancer (1997–1999). Recherches Sociologiques, 35, 3–28.Google Scholar
  26. Lazega, E., Mounier, L., Jourda, M.-T., & Stofer, R. (2006). Organizational vs. personal social capital in scientists’ performance: A multi-level network study of elite French cancer researchers (1996–1998). Scientometrics, 67, 27–44.CrossRefGoogle Scholar
  27. Lazega, E., Jourda, M.-T., Mounier, L., & Stofer, R. (2008). Catching up with big fish in the big pond? Multi-level network analysis through linked design. Social Networks, 30, 159–176.CrossRefGoogle Scholar
  28. Lazega, E., Sapulete, S., & Mounier, L. (2011). Structural stability regardless of membership turnover? The added value of blockmodelling in the analysis of network evolution. Quality and Quantity, 45, 129–144.CrossRefGoogle Scholar
  29. Lazega, E., Jourda, M.-T., & Mounier, L. (2013). Network lift from dual alters: Extended opportunity structures from a multilevel and structural perspective. European Sociological Review, 29, 1226–1238.CrossRefGoogle Scholar
  30. Mali, F., Kronegger, L., Doreian, P., & Ferligoj, A. (2012). Dynamic scientific co-authorship networks. In A. Scharnhorst, K. Börner, & P. Besselaar (Eds.), Models of science dynamics, understanding complex systems (pp. 195–232). Berlin: Springer.Google Scholar
  31. Multilevel Network Modeling Group. (2012). What are multilevel networks. University of Manchester. Available at:
  32. R Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria. Available at
  33. Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846–850.CrossRefGoogle Scholar
  34. Snijders, T. A. B., & Nowicki, K. (1997). Estimation and prediction for stochastic blockmodels for graphs with latent block structure. Journal of Classification, 14, 75–100.CrossRefGoogle Scholar
  35. Snijders, T. A. B., Lomi, A., & Torló, V. J. (2013). A model for the multiplex dynamics of two-mode and one-mode networks, with an application to employment preference, friendship, and advice. Social Networks, 35, 265–276.CrossRefGoogle Scholar
  36. Steinley, D. (2004). Properties of the Hubert-Arable adjusted rand index. Psychological Methods, 9, 386–396.CrossRefGoogle Scholar
  37. Wang, P., Robins, G., Pattison, P., & Lazega, E. (2013). Exponential random graph models for multilevel networks. Social Networks, 35, 96–115.CrossRefGoogle Scholar
  38. Wasserman, S., & Iacobucci, D. (1991). Statistical modeling of one-mode and 2-mode networks – Simultaneous analysis of graphs and bipartite graphs. British Journal of Mathematical and Statistical Psychology, 44, 13–43.CrossRefGoogle Scholar
  39. White, H. C., Boorman, S. A., & Breiger, R. L. (1976). Social structure from multiple networks. I. Blockmodels of roles and positions. American Journal of Sociology, 81, 730–780.CrossRefGoogle Scholar
  40. Žiberna, A. (2007). Generalized blockmodeling of valued networks. Social Networks, 29, 105–126.CrossRefGoogle Scholar
  41.  Žiberna, A. (2013a). Generalized blockmodeling of sparse networks. Metodološki Zvezki, 10, 99–119.Google Scholar
  42. Žiberna, A. (2013b). Blockmodeling 0.2.2: An R package for generalized and classical blockmodeling of valued networks. Available at:
  43. Žiberna, A. (2014). Blockmodeling of multilevel networks. Social Networks, 39, 46–61.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Social SciencesUniversity of LjubljanaLjubljanaSlovenia
  2. 2.CSO-CNRSInstitut d’Etudes Politiques de Paris, SPCParisFrance

Personalised recommendations