Advertisement

Fundamentals of Electrochemistry, Corrosion and Corrosion Protection

  • Christian D. Fernández-Solis
  • Ashokanand Vimalanandan
  • Abdulrahman Altin
  • Jesus S. Mondragón-Ochoa
  • Katharina Kreth
  • Patrick Keil
  • Andreas ErbeEmail author
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 917)

Abstract

This chapter introduces the basics of electrochemistry, with a focus on electron transfer reactions. We will show that the electrode potential formed when a metal is immersed in a solution is most of the time not an equilibrium potential, but a mixed potential in a stationary state. This mixed potential formation is the basis of corrosion of metals in aqueous solutions. Organic coatings are introduced as protecting agents, and several types of coatings are discussed: classical passive coatings, and active coatings as modern developments. Three electrochemical techniques, which are commonly used to asses the protecting properties of coatings, are shortly introduced as well: linear polarisation measurements, electrochemical impedance spectroscopy, and scanning Kelvin probe measurements.

Keywords

Electrochemical Impedance Spectroscopy Oxygen Reduction Reaction Oxygen Reduction Corrosion Inhibitor Open Circuit Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

A.A. and A.E. acknowledge support from the DFG (Deutsche Forschungsgemeinschaft) by grant number ER 601/3-1 within the Priority Program 1640 “Joining by plastic deformation”. J.S.M.O. thanks the Mexican Consejo Nacional de Ciencia y Tecnología (Conacyt) for a scholarship. The authors thank Prof. M. Stratmann for continuous support and Michael Rohwerder for helpful discussions.

References

  1. 1.
    C.M.A. Brett, A.M.O. Brett. Electrochemistry—Principles, Methods, and Applications (Oxford University Press, Oxford, 1993)Google Scholar
  2. 2.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 2001)Google Scholar
  3. 3.
    C.H. Hamann, A. Hamnett, W. Vielstich. Electrochemistry (Wiley, Weinheim, 1998)Google Scholar
  4. 4.
    Helmut Kaesche, Corrosion of Metals: Physicochemical Principles and Current Problems (Springer, Berlin, 2003)CrossRefGoogle Scholar
  5. 5.
    R.W. Revie (ed.), Uhlig’s Corrosion Handbook, 3rd edn. (Wiley, Hoboken, 2011)Google Scholar
  6. 6.
    D.F. Evans, H. Wennerström. The Colloidal Domain (Wiley, New York, 1999)Google Scholar
  7. 7.
  8. 8.
    J. Lyklema, Fundamentals of Interface and Colloid Science, vol. 2—Solid-Liquid Interfaces (Academic Press, San Diego, 1995)Google Scholar
  9. 9.
    A. Erbe, K. Tauer, R. Sigel, Ion distribution around electrostatically stabilized polystyrene latex particles studied by ellipsometric light scattering. Langmuir 23, 452–459 (2007)CrossRefGoogle Scholar
  10. 10.
    R. Okamoto, A. Onuki, Charged colloids in an aqueous mixture with a salt. Phys. Rev. E 84, 051401 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    W. Dreyer, C. Guhlke, M. Landstorfer, A mixture theory of electrolytes containing solvation effects. Electrochem. Commun. 43, 75–78 (2014)CrossRefGoogle Scholar
  12. 12.
    J. Lyklema, Quest for ionion correlations in electric double layers and overcharging phenomena. Adv. Colloid Interface Sci. 147–148, 205–213 (2009)CrossRefGoogle Scholar
  13. 13.
    R.R. Netz, H. Orland, Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions. Eur. Phys. J. E 1, 203–214 (2000)CrossRefGoogle Scholar
  14. 14.
    R.R. Netz, Static van der Waals interactions in electrolytes. Eur. Phys. J. E 5, 189–205 (2001)CrossRefGoogle Scholar
  15. 15.
    S. Trasatti, The “absolute” electrode potential—the end of the story. Electrochim. Acta 35, 269–271 (1990)CrossRefGoogle Scholar
  16. 16.
    W.M. Haynes (ed.), Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2014)Google Scholar
  17. 17.
    Carl Wagner, Wilhelm Traud, Über die Deutung von Korrosionsvorgängen durch Überlagerung von elektrochemischen Teilvorgängen und über die Potentialbildung an Mischelektroden. Z. Elektrochem. Angew. Phys. Chem. 44, 391–402 (1938)Google Scholar
  18. 18.
    C.H. Bamford, R.G. Compton (eds.), Electrode Kinetics: Principles and Methodology (Elsevier, Amsterdam, 1986)Google Scholar
  19. 19.
    T.J. Kemp, Southampton Electrochemistry Group—Instrumental Methods in Electrochemistry (Ellis Horwood, Chichester, 1985)Google Scholar
  20. 20.
    M. Stern, A.L. Geary, Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc. 104, 56–63 (1957)CrossRefGoogle Scholar
  21. 21.
    R.A. Marcus, Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 65, 599–610 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    D.D. Macdonald, Reflections on the history of electrochemical impedance spectroscopy. Electrochim. Acta 51, 1376–1388 (2006)CrossRefGoogle Scholar
  23. 23.
    A. Battistel, F. La Mantia, Nonlinear analysis: the intermodulated differential immittance spectroscopy. Anal. Chem. 85, 6799–6805 (2013)CrossRefGoogle Scholar
  24. 24.
    J.W. Schultze, A.W. Hassel, in Encyclopedia of Electrochemistry. Passivity of Metals, Alloys and Semiconductors, vol 4 (Wiley, Weinheim, 2007), pp. 216–235Google Scholar
  25. 25.
    S.-L. Wu, M.E. Orazem, B. Tribollet, V. Vivier, The influence of coupled faradaic and charging currents on impedance spectroscopy. Electrochim. Acta 131, 3–12 (2014)CrossRefGoogle Scholar
  26. 26.
    M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy (Wiley, Hoboken, 2008)Google Scholar
  27. 27.
    E. Barsoukov, JR Macdonald, Impedance Spectroscopy—Theory, Experiment and Applications (Wiley, Hoboken, 2005)Google Scholar
  28. 28.
    M. Stratmann, The investigation of the corrosion properties of metals, covered with adsorbed electrolyte layers—a new experimental technique. Corros. Sci. 27, 869–872 (1987)CrossRefGoogle Scholar
  29. 29.
    S. Yee, R.A. Oriani, M. Stratmann, Application of a Kelvin microprobe to the corrosion of metals in humid atmospheres. J. Electrochem. Soc. 138, 55–61 (1991)Google Scholar
  30. 30.
    K. Wapner, B. Schoenberger, M. Stratmann, G. Grundmeier, Height-regulating scanning kelvin probe for simultaneous measurement of surface topology and electrode potentials at buried polymer/metal interfaces. J. Electrochem. Soc. 152, E114–E122 (2005)CrossRefGoogle Scholar
  31. 31.
    M. Stratmann, H. Streckel, On the atmospheric corrosion of metals which are covered with thin electrolyte layers—I. Verification of the experimental technique. Corros. Sci. 30, 681–696 (1990)CrossRefGoogle Scholar
  32. 32.
    M. Stratmann, H. Streckel, On the atmospheric corrosion of metals which are covered with thin electrolyte layers—II. Experimental results. Corros. Sci. 30, 697–714 (1990)CrossRefGoogle Scholar
  33. 33.
    M. Stratmann, H. Streckel, K.T. Kim, S. Crockett, On the atmospheric corrosion of metals which are covered with thin electrolyte layers-III. The measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers. Corros. Sci. 30, 715–734 (1990)CrossRefGoogle Scholar
  34. 34.
    M. Stratmann, R. Feser, A. Leng, Corrosion protection by organic films. Electrochim. Acta 39, 1207–1214 (1994)CrossRefGoogle Scholar
  35. 35.
    M. Stratmann, A. Leng, W. Fürbeth, H. Streckel, H. Gehmecker, K.-H. Große-Brinkhaus, The scanning Kelvin probe; a new technique for the in situ analysis of the delamination of organic coatings. Prog. Org. Coat. 27, 261–267 (1996)CrossRefGoogle Scholar
  36. 36.
    H. Baumgärtner, H.D. Liess, Micro Kelvin probe for local work‐function measurements. Rev. Sci. Instr. 59, 802–805 (1988)Google Scholar
  37. 37.
    M.F. Becker, A.F. Stewart, J.A. Kardach, A.H. Guenther, Surface charging in laser damage to dielectric surfaces and thin films. Appl. Opt. 26, 805–812 (1987)ADSCrossRefGoogle Scholar
  38. 38.
    D. Mao, A. Kahn, M. Marsi, G. Margaritondo, Synchrotron-radiation-induced surface photovoltage on gaas studied by contact-potential-difference measurements. Phys. Rev. B 42, 3228–3230 (1990)ADSCrossRefGoogle Scholar
  39. 39.
    P. Chiaradia, J.E. Bonnet, M. Fanfoni, C. Goletti, G. Lampel, Schottky barrier and surface photovoltage induced by synchrotron radiation in GaP(110)/Ag. Phys. Rev. B 47, 13520–13526 (1993)ADSCrossRefGoogle Scholar
  40. 40.
    H. Ren, H. Sinha, A. Sehgal, M.T. Nichols, G.A. Antonelli, Y. Nishi, J.L. Shohet, Surface potential due to charge accumulation during vacuum ultraviolet exposure for high-k and low-k dielectrics. Appl. Phys. Lett. 97, 072901 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    J.L. Lauer, J.L. Shohet, Surface potential measurements of vacuum ultraviolet irradiated Al2O3, Si3N4, and SiO2. IEEE Trans. Plasma Sci. 33, 248–249 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    B. Salgin, D. Pontoni, D. Vogel, H. Schroder, P. Keil, M. Stratmann, H. Reichert, M. Rohwerder, Chemistry-dependent x-ray-induced surface charging. Phys. Chem. Chem. Phys. 16, 22255–22261 (2014)CrossRefGoogle Scholar
  43. 43.
    A. Leng, H. Streckel, M. Stratmann, The delamination of polymeric coatings from steel. Part 1: calibration of the Kelvin probe and basic delamination mechanism. Corros. Sci. 41, 547–578 (1998)Google Scholar
  44. 44.
    A. Leng, H. Streckel, M. Stratmann, The delamination of polymeric coatings from steel. Part 2: first stage of delamination, effect of type and concentration of cations on delamination, chemical analysis of the interface. Corros. Sci. 41, 579–597 (1998)CrossRefGoogle Scholar
  45. 45.
    A. Leng, H. Streckel, K. Hofmann, M. Stratmann, The delamination of polymeric coatings from steel. Part 3: effect of the oxygen partial pressure on the delamination reaction and current distribution at the metal/polymer interface. Corros. Sci. 41, 599–620 (1998)CrossRefGoogle Scholar
  46. 46.
    G.S. Frankel, M. Stratmann, M. Rohwerder, A. Michalik, B. Maier, J. Dora, M. Wicinski, Potential control under thin aqueous layers using a Kelvin probe. Corros. Sci. 49, 2021–2036 (2007)CrossRefGoogle Scholar
  47. 47.
    G. Grundmeier, W. Schmidt, M. Stratmann, Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation. Electrochim. Acta 45, 2515–2533 (2000)CrossRefGoogle Scholar
  48. 48.
    G. Williams, H.N. McMurray, Polyaniline inhibition of filiform corrosion on organic coated AA2024-T3. Electrochim. Acta 54, 4245–4252 (2009)Google Scholar
  49. 49.
    R. Posner, P.R. Sundel, T. Bergman, P. Roose, M. Heylen, G. Grundmeier, P. Keil, UV-curable polyester acrylate coatings: barrier properties and ion transport kinetics along polymer/metal interfaces. J. Electrochem. Soc. 158, C185–C193 (2011)CrossRefGoogle Scholar
  50. 50.
    G. Frankel, M. Rohwerder, in Encyclopedia of Electrochemistry. Electrochemical Techniques for Corrosion, vol 4 (Wiley, Weinheim, Germany, 2007), pp. 687–723Google Scholar
  51. 51.
    D. Iqbal, J. Rechmann, A. Sarfraz, A. Altin, G. Genchev, A. Erbe, Synthesis of ultrathin poly(methyl methacrylate) model coatings bound via organosilanes to zinc and investigation of their delamination kinetics. ACS Appl. Mater. Interfaces 6, 18112–18121 (2014)CrossRefGoogle Scholar
  52. 52.
    N.W. Khun, G.S. Frankel, Effects of surface roughness, texture and polymer degradation on cathodic delamination of epoxy coated steel samples. Corros. Sci. 67, 152–160 (2013)CrossRefGoogle Scholar
  53. 53.
    D. Iqbal, R.S. Moirangthem, A. Bashir, A. Erbe, Study of polymer coating delamination kinetics on zinc modified with zinc oxide of different morphologies. Mater. Corros. 65, 370–375 (2014)Google Scholar
  54. 54.
    A. Goldschmidt, H. Streitberger, BASF-Handbuch Lackiertechnik (Vincentz, Hannover, 2002)Google Scholar
  55. 55.
    B. Tieke, Makromolekulare Chemie (Wiley, Weinheim, 1997)Google Scholar
  56. 56.
    D. Braun, H. Cherdron, H. Ritter, Praktikum der Makromolekularen Stoffe (Wiley, Weinheim, 1999)Google Scholar
  57. 57.
    G. Grundmeier, A. Simões, in Encyclopedia of Electrochemistry. Corrosion Protection by Organic Coatings, vol 4 (Wiley, Weinheim, Germany, 2007), pp. 500–566Google Scholar
  58. 58.
    F. Deflorian, S. Rossi, M. Fedel, Organic coatings degradation: comparison between natural and artificial weathering. Corros. Sci. 50, 2360–2366 (2008)CrossRefGoogle Scholar
  59. 59.
    E.P.M. van Westing, G.M. Ferrari, J.H.W. de Wit, The determination of coating performance with impedance measurements—III. In situ determination of loss of adhesion. Corros. Sci. 36, 979–994 (1994)CrossRefGoogle Scholar
  60. 60.
    E.P.M. van Westing, G.M. Ferrari, J.H.W. de Wit, The determination of coating performance with impedance measurements-I. Coating polymer properties. Corros. Sci. 34, 1511–1530 (1993)Google Scholar
  61. 61.
    J.R. Scully, S.T. Hensley, Lifetime prediction for organic coatings on steel and a magnesium alloy using electrochemical impedance methods. Corrosion 50, 705–716 (1994)CrossRefGoogle Scholar
  62. 62.
    F. Mansfeld, Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings. J. Appl. Electrochem. 25, 187–202 (1995)Google Scholar
  63. 63.
    D.M. Brasher, A.H. Kingsbury, Electrical measurements in the study of immersed paint coatings on metal. I. Comparison between capacitance and gravimetric methods of estimating water-uptake. J. Appl. Chem. 4, 62–72 (1954)Google Scholar
  64. 64.
    R. Posner, K. Wapner, S. Amthor, K.J. Roschmann, G. Grundmeier, Electrochemical investigation of the coating/substrate interface stability for styrene/acrylate copolymer films applied on iron. Corros. Sci. 52, 37–44 (2010)CrossRefGoogle Scholar
  65. 65.
    B.R. Hinderliter, S.G. Croll, Simulation of transient electrochemical impedance spectroscopy due to water uptake or oxide growth. Electrochim. Acta 54, 5344–5352 (2009)CrossRefGoogle Scholar
  66. 66.
    V. La Saponara, Environmental and chemical degradation of carbon/epoxy and structural adhesive for aerospace applications: Fickian and anomalous diffusion, Arrhenius kinetics. Compos. Struct. 93, 2180–2195 (2011)CrossRefGoogle Scholar
  67. 67.
    B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta 55, 6218–6227 (2010)CrossRefGoogle Scholar
  68. 68.
    M.R.S. Abouzari, F. Berkemeier, G. Schmitz, D. Wilmer, On the physical interpretation of constant phase elements. Solid State Ionics 180, 922–927 (2009)Google Scholar
  69. 69.
    U. Stimming, J.W. Schultze, The capacity of passivated iron electrodes and the band structure of the passive layer. Ber. Bunsenges. 80, 1297–1302 (1976)CrossRefGoogle Scholar
  70. 70.
    U. Stimming, J.W. Schultze, A semiconductor model of the passive layer on iron electrodes and its application to electrochemical reactions. Electrochim. Acta 24, 859–869 (1979)CrossRefGoogle Scholar
  71. 71.
    S. Yee, R.A. Oriani, M. Stratmann, Application of a Kelvin microprobe to the corrosion of metals in humid atmospheres. J. Electrochem. Soc. 138, 55–61 (1991)Google Scholar
  72. 72.
    H. Leidheiser Jr., W. Wang, L. Igetoft, The mechanism for the cathodic delamination of organic coatings from a metal surface. Prog. Org. Coat. 11, 19–40 (1983)Google Scholar
  73. 73.
    S. Nayak, P.U. Biedermann, M. Stratmann, A. Erbe, A mechanistic study of the electrochemical oxygen reduction on the model semiconductor n-Ge(100) by ATR-IR and DFT. Phys. Chem. Chem. Phys. 15, 5771–5781 (2013)Google Scholar
  74. 74.
    S. Nayak, P.U. Biedermann, M. Stratmann, A. Erbe, In situ infrared spectroscopic investigation of intermediates in the electrochemical oxygen reduction on n-Ge (100) in alkaline perchlorate and chloride electrolyte. Electrochim. Acta 106, 472–482 (2013)Google Scholar
  75. 75.
    W. Fürbeth, M. Stratmann, The delamination of polymeric coatings from electrogalvanised steel—a mechanistic approach. Part 1: delamination from a defect with intact zinc layer. Corros. Sci. 43, 207–227 (2001)CrossRefGoogle Scholar
  76. 76.
    W. Fürbeth, M. Stratmann, The delamination of polymeric coatings from electrogalvanized steel-a mechanistic approach. Part 2: delamination from a defect down to steel. Corros. Sci. 43, 229–241 (2001)CrossRefGoogle Scholar
  77. 77.
    W. Fürbeth, M. Stratmann, The delamination of polymeric coatings from electrogalvanized steel–a mechanistic approach.: Part 3: delamination kinetics and influence of CO2. Corros. Sci. 43, 243–254 (2001)CrossRefGoogle Scholar
  78. 78.
    M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions. (National Association of Corrosion Engineers/Centre Belge d’Etude de la Corrosion CEBELCOR, Houston/Bruxelles, 1974)Google Scholar
  79. 79.
    D. Iqbal, A. Kostka, A. Bashir, A. Sarfraz, Y. Chen, A.D. Wieck, A. Erbe, Sequential growth of zinc oxide nanorod arrays at room temperature via a corrosion process: application in visible light photocatalysis. ACS Appl. Mater. Interfaces 6, 18728–18734 (2014)CrossRefGoogle Scholar
  80. 80.
    S.J. Garcia, H.R. Fischer, S. van der Zwaag, A critical appraisal of the potential of self healing polymeric coatings. Prog. Org. Coat. 72, 211–221 (2011)CrossRefGoogle Scholar
  81. 81.
    A.E. Hughes, I.S. Cole, T.H. Muster, R.J Varley, Designing green, self-healing coatings for metal protection. NPG Asia Mater. 2, 143–151 (2010)Google Scholar
  82. 82.
    M.F. Montemor, Functional and smart coatings for corrosion protection: a review of recent advances. Surf. Coat. Technol. 258, 17–37 (2014)CrossRefGoogle Scholar
  83. 83.
    M. Zheludkevich, in Self-Healing Materials—Fundamentals, Design Strategies, and Applications. Self-Healing Anticorrosion Coatings, Chapter 4 (Wiley, Weinheim, 2009), pp. 101–139Google Scholar
  84. 84.
    M.L. Zheludkevich, J. Tedim, M.G.S. Ferreira, “Smart” coatings for active corrosion protection based on multi-functional micro and nanocontainers. Electrochim. Acta 82, 314–323 (2012)CrossRefGoogle Scholar
  85. 85.
    D.V. Andreeva, D. Fix, H. Möhwald, D.G. Shchukin, Self-healing anticorrosion coatings based on pH-sensitive polyelectrolyte/inhibitor sandwichlike nanostructures. Adv. Mater. 20, 2789–2794 (2008)CrossRefGoogle Scholar
  86. 86.
    B. Blaiszik, S. Kramer, S. Olugebefola, J. Moore, N. Sottos, S. White, Self-healing polymers and composites. Ann. Rev. Mater. Res. 40, 179–211 (2010)ADSCrossRefGoogle Scholar
  87. 87.
    S.J. Garcia, H.R. Fischer, P.A. White, J. Mardel, Y. Gonzalez-Garcia, J.M.C. Mol, A.E. Hughes, Self-healing anticorrosive organic coating based on an encapsulated water reactive silyl ester: synthesis and proof of concept. Prog. Org. Coat. 70, 142–149 (2011)CrossRefGoogle Scholar
  88. 88.
    D.O. Grigoriev, K. Köhler, E. Skorb, D.G. Shchukin, H. Möhwald, Polyelectrolyte complexes as a smart depot for self-healing anticorrosion coatings. Soft Matter 5, 1426–1432 (2009)ADSCrossRefGoogle Scholar
  89. 89.
    M.L. Zheludkevich, D.G. Shchukin, K.A. Yasakau, H. Möhwald, M.G.S. Ferreira, Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor. Chem. Mater. 19, 402–411 (2007)Google Scholar
  90. 90.
    G. Williams, S. Geary, H.N. McMurray, Smart release corrosion inhibitor pigments based on organic ion-exchange resins. Corros. Sci. 57, 139–147 (2012)CrossRefGoogle Scholar
  91. 91.
    G. Williams, H.N. McMurray, Inhibition of filiform corrosion on organic-coated AA2024-T3 by smart-release cation and anion-exchange pigments. Electrochim. Acta 69, 287–294 (2012)CrossRefGoogle Scholar
  92. 92.
    R.G. Buchheit, H. Guan, S. Mahajanam, F. Wong, Active corrosion protection and corrosion sensing in chromate-free organic coatings. Prog. Org. Coat. 47, 174–182 (2003)Google Scholar
  93. 93.
    G. Williams, H.N. McMurray, M.J. Loveridge, Inhibition of corrosion-driven organic coating disbondment on galvanised steel by smart release group II and Zn(II)-exchanged bentonite pigments. Electrochim. Acta 55, 1740–1748 (2010)CrossRefGoogle Scholar
  94. 94.
    M.F. Montemor, D.V. Snihirova, M.G. Taryba, S.V. Lamaka, I.A. Kartsonakis, A.C. Balaskas, G.C. Kordas, J. Tedim, A. Kuznetsova, M.L. Zheludkevich, M.G.S. Ferreira, Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors. Electrochim. Acta 60, 31–40 (2012)CrossRefGoogle Scholar
  95. 95.
    D.G. Shchukin, M. Zheludkevich, K. Yasakau, S. Lamaka, M.G.S. Ferreira, H. Möhwald, Layer-by-layer assembled nanocontainers for self-healing corrosion protection. Adv. Mater. 18, 1672–1678 (2006)Google Scholar
  96. 96.
    D.G. Shchukin, S.V. Lamaka, K.A. Yasakau, M.L. Zheludkevich, M.G.S. Ferreira, H. Möhwald, Active anticorrosion coatings with halloysite nanocontainers. J. Phys. Chem. C 112, 958–964 (2008)Google Scholar
  97. 97.
    D.G. Shchukin, H. Möhwald, Surface-engineered nanocontainers for entrapment of corrosion inhibitors. Adv. Funct. Mater. 17, 1451–1458 (2007)Google Scholar
  98. 98.
    P. Zarras, N. Anderson, C. Webber, D.J. Irvin, J.A. Irvin, A. Guenthner, J.D. Stenger-Smith, Progress in using conductive polymers as corrosion-inhibiting coatings. Radiat. Phys. Chem. 68, 387–394 (2003)ADSCrossRefGoogle Scholar
  99. 99.
    J.O. Iroh, R. Rajagopalan, Electrochemical polymerization of aniline on carbon fibers in aqueous toluene sulfonate solution. J. Appl. Polym. Sci. 76, 1503–1509 (2000)Google Scholar
  100. 100.
    A.A. Syed, M.K. Dinesan, Review: polyaniline-a novel polymeric material. Talanta 38, 815–837 (1991)CrossRefGoogle Scholar
  101. 101.
    G. Paliwoda-Porebska, M. Rohwerder, M. Stratmann, U. Rammelt, L. Duc, W. Plieth, Release mechanism of electrodeposited polypyrrole doped with corrosion inhibitor anions. J. Solid State Electrochem. 10, 730–736 (2006)Google Scholar
  102. 102.
    M. Rohwerder, A. Michalik, Conducting polymers for corrosion protection: What makes the difference between failure and success? Electrochim. Acta 53, 1300–1313 (2007)Google Scholar
  103. 103.
    M. Rohwerder, L.M. Duc, A. Michalik, In situ investigation of corrosion localised at the buried interface between metal and conducting polymer based composite coatings. Electrochim. Acta 54, 6075–6081 (2009)Google Scholar
  104. 104.
    M. Rohwerder, Conducting polymers for corrosion protection: a review. Int. J. Mater. Res. 100, 1331–1342 (2009)Google Scholar
  105. 105.
    M. Rohwerder, S. Isik-Uppenkamp, C.A. Amarnath, Application of the Kelvin Probe method for screening the interfacial reactivity of conducting polymer based coatings for corrosion protection. Electrochim. Acta 56, 1889–1893 (2011)Google Scholar
  106. 106.
    G. Williams, R.J. Holness, D.A. Worsley, H.N. McMurray, Inhibition of corrosion-driven organic coating delamination on zinc by polyaniline. Electrochem. Commun. 6, 549–555 (2004)Google Scholar
  107. 107.
    A. Vimalanandan, L.-P. Lv, T.H. Tran, K. Landfester, D. Crespy, M. Rohwerder, Redox-responsive self-healing for corrosion protection. Adv. Mater. 25, 6980–6984 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christian D. Fernández-Solis
    • 1
  • Ashokanand Vimalanandan
    • 1
  • Abdulrahman Altin
    • 1
  • Jesus S. Mondragón-Ochoa
    • 1
  • Katharina Kreth
    • 2
  • Patrick Keil
    • 2
  • Andreas Erbe
    • 1
    Email author
  1. 1.Max-Planck-Institut für Eisenforschung GmbHDüsseldorfGermany
  2. 2.BASF Coatings GmbHMünsterGermany

Personalised recommendations