Advertisement

Optical Absorption Spectroscopy at Interfaces

  • Andreas ErbeEmail author
  • Adnan Sarfraz
  • Cigdem Toparli
  • Kai Schwenzfeier
  • Fang Niu
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 917)

Abstract

This chapter summarises the physical principles of optical absorption spectroscopy and its use for the characterisation of surfaces and interfaces. After a brief discussion of the fundamentals of absorption spectroscopy and its relation to quantum mechanics, the chapter discusses the basics of optics at interfaces, focusing on the absorption of light by molecules in the interfacial region. Because of fundamental similarities, the chapter will touch on spectroscopy of both electronic and vibrational transitions, with a strong focus on infrared absorption experiments. There is a brief discussion, with reference to examples, of experiments in internal and external reflection geometry, including a brief discussion of the measurement of spectra on different classes of substrates (metallic vs. transparent).

Keywords

High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Dielectric Function Attenuate Total Reflection Internal Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft. C. T. thanks the International Max Planck Research School for Surface and Interface Engineering in Advanced Materials (IMPRS-SurMat) for a scholarship. The authors thank Prof. M. Stratmann for continuous support.

References

  1. 1.
    J.M. Hollas, Modern Spectroscopy, 4th edn. (Wiley, Chichester, 2004)Google Scholar
  2. 2.
    I.N. Levine, Molecular Spectroscopy (Wiley, New York, 1975)Google Scholar
  3. 3.
    D.C. Harris, M.D. Bertolucci, Symmetry and Spectroscopy—An Introduction to Vibrational and Electronic Spectroscopy (Dover, New York, 1978)Google Scholar
  4. 4.
    G. Gauglitz, T. Vo-Dinh (eds.), Handbook of Spectroscopy (Wiley, Weinheim, 2003)Google Scholar
  5. 5.
    P.M.A. Sherwood, Vibrational Spectroscopy of Solids (Cambridge University Press, Cambridge, 1972)Google Scholar
  6. 6.
    M. Fox, Optical Properties of Solids (Oxford University Press, Oxford, 2001)Google Scholar
  7. 7.
    V.P. Tolstoy, I.V. Chernyshova, V.A. Skryshevsky, Handbook of Infrared Spectroscopy of Ultrathin Films (Wiley, Hoboken, 2003)CrossRefGoogle Scholar
  8. 8.
    W. Plieth, G.S. Wilson, C. Gutierrez de la Fe, Spectroelectrochemistry: a survey of in situ spectroscopic techniques. Pure Appl. Chem. 70, 1395–1414 (1998)Google Scholar
  9. 9.
    W. Plieth, G.S. Wilson, C. Gutierrez de la Fe, Erratum. Pure Appl. Chem. 70, 2409–2412 (1998)Google Scholar
  10. 10.
    D. Marshall, P.R. Rich, Mitochondrial function, in Methods in Enzymology, vol. 456, Studies of Complex I by Fourier Transform Infrared Spectroscopy (Elsevier, Amsterdam, 2009), pp. 53–74Google Scholar
  11. 11.
    P.R. Rich, M. Iwaki, Methods to probe protein transitions with ATR infrared spectroscopy. Mol. BioSyst. 3, 398–407 (2007)CrossRefGoogle Scholar
  12. 12.
    C. Vigano, J.-M. Ruysschaert, E. Goormaghtigh, Sensor applications of attenuated total reflection infrared spectroscopy. Talanta, 65, 1132–1142 (2005)Google Scholar
  13. 13.
    K. Ataka, J. Heberle, Biochemical applications of surface-enhanced infrared absorption spectroscopy. Anal. Bioanal. Chem. 388, 47–54 (2007)CrossRefGoogle Scholar
  14. 14.
    F. Zaera, Probing liquid/solid interfaces at the molecular level. Chem. Rev. 112, 2920–2986 (2012)CrossRefGoogle Scholar
  15. 15.
    D.A. Woods, C.D. Bain, Total internal reflection spectroscopy for studying soft matter. Soft Matter 10, 1071–1096 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)Google Scholar
  17. 17.
    C.D. Bain, P.R. Greene, Spectroscopy of adsorbed layers. Curr. Opin. Colloid Interface Sci. 6, 313–320 (2001)CrossRefGoogle Scholar
  18. 18.
    A. Barth, Infrared spectroscopy of proteins. Biochim. Biophys. Acta (Bioenergetics) 1767, 1073–1101 (2007)CrossRefGoogle Scholar
  19. 19.
    R.A. Nyquist, Interpreting Infrared, Raman, and Nuclear Magnetic Resonance Spectra (Academic Press, San Diego, 2001)Google Scholar
  20. 20.
    E.B. Wilson, J.C. Decius, P.C. Cross, Molecular Vibrations (Dover Publications, New York, 1955)Google Scholar
  21. 21.
    Z.-Q. Tian, B. Ren, Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced raman spectroscopy. Annu. Rev. Phys. Chem. 55, 197–229 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    D.H. Murgida, P. Hildebrandt, Disentangling interfacial redox processes of proteins by SERR spectroscopy. Chem. Soc. Rev. 37, 937–945 (2008)CrossRefGoogle Scholar
  23. 23.
    S.L. Kleinman, R.R. Frontiera, A.-I. Henry, J.A. Dieringer, R.P. Van Duyne, Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 15, 21–36 (2013)CrossRefGoogle Scholar
  24. 24.
    E.D. Palik, Handbook of Optical Constants of Solids, vols. 1–4 (Academic Press, San Diego, 1985–1997)Google Scholar
  25. 25.
    T.N. Stanislavchuk, T.D. Kang, P.D. Rogers, E.C. Standard, R. Basistyy, A.M. Kotelyanskii, G. Nita, T. Zhou, G.L. Carr, M. Kotelyanskii, A.A. Sirenko, Synchrotron radiation-based far-infrared spectroscopic ellipsometer with full mueller-matrix capability. Rev. Sci. Instr. 84, 023901 (2013)Google Scholar
  26. 26.
    H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, Chichester, 2007)CrossRefGoogle Scholar
  27. 27.
    H. Haug, S.W. Koch, Quantum Theory of Optical and Electronic Properties of Semiconductors, 5th edn. (World Scientific, Singapore, 2009)CrossRefzbMATHGoogle Scholar
  28. 28.
    F. Wooten, Optical Properties of Solids (Academic Press, San Diego, 1972)Google Scholar
  29. 29.
    W. Vogel, D.-G. Welsch, Quantum Optics (Wiley, Weinheim, 2006)CrossRefzbMATHGoogle Scholar
  30. 30.
    C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996)zbMATHGoogle Scholar
  31. 31.
    M. Olschewski, S. Knop, J.R.G. Lindner, P. Vöhringer, From single hydrogen bonds to extended hydrogen-bond wires: low-dimensional model systems for vibrational spectroscopy of associated liquids. Angew. Chem. Int. Ed. 52, 9634–9654 (2013)CrossRefGoogle Scholar
  32. 32.
    J.E. Bertie, Z. Lan, Infrared intensities of liquids XX: The intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O (l) at 25 °C between 15,000 and 1 cm−1. Appl. Spectrosc. 50, 1047–1057 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    D.M. Leitner, M. Havenith, M. Gruebele, Biomolecule large-amplitude motion and solvation dynamics: modelling and probes from THz to x-rays. Int. Rev. Phys. Chem. 25, 553–582 (2006)CrossRefGoogle Scholar
  34. 34.
    G. Niehues, M. Heyden, D.A. Schmidt, M. Havenith, Exploring hydrophobicity by THz absorption spectroscopy of solvated amino acids. Faraday Discuss. 150, 193–207 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    M. Chaplin, Water absorption spectrum. http://www1.lsbu.ac.uk/water/water_vibrational_spectrum.html. Accessed Oct 2014
  36. 36.
    Labcognition Analytical Software. irAnalyze/RAMalyze. http://www.labcognition.com. Accessed Oct 2014
  37. 37.
    N.W. Ashcroft, D. Mermin, Solid State Physics (Holt, Rinehart and Winston, Dumfries, 1976)zbMATHGoogle Scholar
  38. 38.
    R.A. Jishi, M.S. Dresselhaus, G. Dresselhaus, Electron-phonon coupling and the electrical conductivity of fullerene nanotubes. Phys. Rev. B 48, 11385–11389 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (Elsevier Science, Amsterdam, 1999)Google Scholar
  40. 40.
    J. Lekner, Theory of Reflection of Electromagnetic and Particle Waves (Martinus Nijhoff, Dordrecht, 1987)CrossRefzbMATHGoogle Scholar
  41. 41.
    M. Schubert, Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems. Phys. Rev. B 53, 4265–4274 (1996)ADSCrossRefGoogle Scholar
  42. 42.
    A. Erbe, Reflcalc. http://home.arcor.de/aerbe/en/prog/a/reflcalc.html. Accessed June 2014
  43. 43.
    A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Boston, 2005)zbMATHGoogle Scholar
  44. 44.
    J.L. Volakis, A. Chatterjee, L.C. Kempel, Finite element method for electromagnetics, in IEEE/OUP Series on Electromagnetic Wave Theory (IEEE Press/Oxford University Press, New York/Oxford, 1998)Google Scholar
  45. 45.
    D. Moss, E. Nabedryk, J. Breton, W. Mäntele, Redox-linked conformational changes in proteins detected by a combination of infrared spectroscopy and protein electrochemistry. Eur. J. Biochem. 187, 565–572 (1990)CrossRefGoogle Scholar
  46. 46.
    J.D. Jackson, Classical Electrodynamics (Wiley, Hoboken, 1998)Google Scholar
  47. 47.
    W.N. Hansen, Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium. J. Opt. Soc. Am. 58, 380–390 (1968)ADSCrossRefGoogle Scholar
  48. 48.
    D.D. Schlereth, W. Mäntele, Redox-induced conformational changes in myoglobin and hemoglobin: electrochemistry and ultraviolet-visible and fourier transform infrared difference spectroscopy at surface-modified gold electrodes in an ultra-thin-layer spectroelectrochemical cell. Biochemistry 31, 7494–7502 (1992)CrossRefGoogle Scholar
  49. 49.
    M.K. Debe, Optical probes of organic thin films: photons-in and photons-out. Prog. Surf. Sci. 24, 1–282 (1987)ADSCrossRefGoogle Scholar
  50. 50.
    M. Moskovits, Surface selection rules. J. Chem. Phys. 77, 4408–4416 (1982)ADSCrossRefGoogle Scholar
  51. 51.
    C. Vericat, M.E. Vela, G. Benitez, P. Carro, R.C. Salvarezza, Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem. Soc. Rev. 39, 1805–1834 (2010)CrossRefGoogle Scholar
  52. 52.
    E. Pensa, E. Cortés, G. Corthey, P. Carro, C. Vericat, M.H. Fonticelli, G. Benítez, A.A. Rubert, R.C. Salvarezza, The chemistry of the sulfur gold interface: in search of a unified model. Acc. Chem. Res. 45, 1183–1192 (2012)CrossRefGoogle Scholar
  53. 53.
    F. Schreiber, Self-assembled monolayers: from ‘simple’ model systems to biofunctionalized interfaces. J. Phys.: Condens. Matter 16, R881–R900 (2004)ADSGoogle Scholar
  54. 54.
    J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1170 (2005)CrossRefGoogle Scholar
  55. 55.
    M. Kind, C. Wöll, Organic surfaces exposed by self-assembled organothiol monolayers: preparation, characterization, and application. Prog. Surf. Sci. 84, 230–278 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    R.G. Snyder, H.L. Strauss, C.A. Elliger, Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains. J. Phys. Chem. 86, 5145–5150 (1982)CrossRefGoogle Scholar
  57. 57.
    R.A. Macphail, H.L. Strauss, R.G. Snyder, C.A. Elliger, C-H stretching modes and the structure of normal alkyl chains. 2. Long, all-trans chains. J. Phys. Chem. 88, 334–341 (1984)CrossRefGoogle Scholar
  58. 58.
    D.L. Allara, R.G. Nuzzo, Spontaneously organized molecular assemblies. 2. Quantitative infrared spectroscopic determination of equilibrium structures of solution-adsorbed n-alkanoic acids on an oxidized aluminum surface. Langmuir 1, 52–66 (1985)CrossRefGoogle Scholar
  59. 59.
    R.D.B. Fraser, T.P. MacRae, Conformation in Fibrous Proteins and Related Synthetic Polypeptides (Academic Press, New York, 1973)Google Scholar
  60. 60.
    J. Liu, B. Schupbach, A. Bashir, O. Shekhah, A. Nefedov, M. Kind, A. Terfort, C. Wöll, Structural characterization of self-assembled monolayers of pyridine-terminated thiolates on gold. Phys. Chem. Chem. Phys. 12, 4459–4472 (2010)CrossRefGoogle Scholar
  61. 61.
    C. Hogan, R. Del Sole, G. Onida, Optical properties of real surfaces from microscopic calculations of the dielectric function of finite atomic slabs. Phys. Rev. B 68, 035405 (2003)ADSCrossRefGoogle Scholar
  62. 62.
    M.I. Muglali, A. Erbe, Y. Chen, C. Barth, P. Koelsch, M. Rohwerder, Modulation of electrochemical hydrogen evolution rate by araliphatic thiol monolayers on gold. Electrochim. Acta 90, 17–26 (2013)CrossRefGoogle Scholar
  63. 63.
    B.E. Hayden, Vibrational spectroscopy of molecules on surfaces, in Reflection Absorption Infrared Spectroscopy (Plenum Press, New York, 1987)Google Scholar
  64. 64.
    C. Zafiu, G. Trettenhahn, D. Pum, U.B. Sleytr, W. Kautek, Structural control of surface layer proteins at electrified interfaces investigated by in situ Fourier transform infrared spectroscopy. Phys. Chem. Chem. Phys. 13, 13232–13237 (2011)Google Scholar
  65. 65.
    M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. (Cambridge University Press, Cambridge, 1999)CrossRefzbMATHGoogle Scholar
  66. 66.
    T. Buffeteau, B. Desbat, J.M. Turlet, Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films: experimental procedure and quantitative analysis. Appl. Spectrosc. 45, 380–389 (1991)ADSCrossRefGoogle Scholar
  67. 67.
    L.A. Nafie, D.W. Vidrine, in Fourier transform infrared spectroscopy. Double Modulation Fourier Transform Spectroscopy, vol. 3 (Academic Press, San Diego, 1982), pp. 83–123Google Scholar
  68. 68.
    K.W. Hipps, G.A. Crosby, Applications of the photoelastic modulator to polarization spectroscopy. J. Phys. Chem. 83, 555–562 (1979)CrossRefGoogle Scholar
  69. 69.
    A. Kerth, A. Erbe, M. Dathe, A. Blume, Infrared reflection absorption spectroscopy of amphipathic model peptides at the air/water interface. Biophys. J. 86, 3750–3758 (2004)CrossRefGoogle Scholar
  70. 70.
    M. Schiek, K. Al-Shamery, M. Kunat, F. Traeger, C. Wöll, Water adsorption on the hydroxylated H-(1 × 1) O-ZnO(0001̄) surface. Phys. Chem. Chem. Phys. 8, 1505–1512 (2006)CrossRefGoogle Scholar
  71. 71.
    E. Amado, A. Kerth, A. Blume, J.R.G. Kressler, Infrared reflection absorption spectroscopy coupled with brewster angle microscopy for studying interactions of amphiphilic triblock copolymers with phospholipid monolayers. Langmuir 24, 10041–10053 (2008)CrossRefGoogle Scholar
  72. 72.
    M. Buchholz, P.G. Weidler, F. Bebensee, A. Nefedov, C. Wöll, Carbon dioxide adsorption on a ZnO(101̄0) substrate studied by infrared reflection absorption spectroscopy. Phys. Chem. Chem. Phys. 16, 1672–1678 (2014)CrossRefGoogle Scholar
  73. 73.
    A. Erbe, A. Kerth, M. Dathe, A. Blume, Interactions of KLA amphipathic model peptides with lipid monolayers. ChemBioChem 10, 2884–2892 (2009)CrossRefGoogle Scholar
  74. 74.
    N.J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific, Ossining, 1987)Google Scholar
  75. 75.
    M. Milosevic, Internal Reflection and Spectroscopy. ATR (Wiley, New York, 2012)CrossRefGoogle Scholar
  76. 76.
    M. Milosevic, On the nature of the evanescent wave. Appl. Spectrosc. 67, 126–131 (2013)ADSCrossRefGoogle Scholar
  77. 77.
    M.W. Davidson, Florida State University, Molecular expressions. http://micro.magnet.fsu.edu/. Accessed Oct 2014
  78. 78.
    E. Goormaghtigh, V. Raussens, J.-M. Ruysschaert, Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim. Biophys. Acta (Biomembranes) 1422, 105–185 (1999)CrossRefGoogle Scholar
  79. 79.
    M. Müller, B. Torger, E. Bittrich, E. Kaul, L. Ionov, P. Uhlmann, M. Stamm, In-situ ATR-FTIR for characterization of thin biorelated polymer films. Thin Solid Films 556, 1–8 (2014)ADSCrossRefGoogle Scholar
  80. 80.
    M. Boncheva, H. Vogel, Formation of stable polypeptide monolayers at interfaces: controlling molecular conformation and orientation. Biophys. J. 73, 1056–1072 (1997)ADSCrossRefGoogle Scholar
  81. 81.
    M. Liley, T.A. Keller, C. Duschl, H. Vogel, Direct observation of self-assembled monolayers, ion complexation, and protein conformation at the gold/water interface: an FTIR spectroscopic approach. Langmuir 13, 4190–4192 (1997)CrossRefGoogle Scholar
  82. 82.
    Y. Cheng, N. Boden, R.J. Bushby, S. Clarkson, S.D. Evans, P.F. Knowles, A. Marsh, R.E. Miles, Attenuated total reflection fourier transform infrared spectroscopic characterization of fluid lipid bilayers tethered to solid supports. Langmuir 14, 839–844 (1998)CrossRefGoogle Scholar
  83. 83.
    A. Erbe, R.J. Bushby, S.D. Evans, L.J.C. Jeuken, Tethered bilayer lipid membranes studied by simultaneous attenuated total reflectance infrared spectroscopy and electrochemical impedance spectroscopy. J. Phys. Chem. B 111, 3515–3524 (2007)CrossRefGoogle Scholar
  84. 84.
    M. Reithmeier, A. Erbe, Dielectric interlayers for increasing the transparency of metal films for mid-infrared attenuated total reflection spectroscopy. Phys. Chem. Chem. Phys. 12, 14798–14803 (2010)CrossRefGoogle Scholar
  85. 85.
    M. Reithmeier, A. Erbe, Application of thin-film interference coatings in infrared reflection spectroscopy of organic samples in contact with thin metal films. Appl. Opt. 50, C301–C308 (2011)CrossRefGoogle Scholar
  86. 86.
    P. Wenzl, M. Fringeli, J. Goette, U.P. Fringeli, Langmuir 10, 4253–4264 (1994)CrossRefGoogle Scholar
  87. 87.
    S. Nayak, P. Ulrich Biedermann, M. Stratmann, A. Erbe, A mechanistic study of the electrochemical oxygen reduction on the model semiconductor n-Ge(100) by ATR-IR and DFT. Phys. Chem. Chem. Phys. 15, 5771–5781 (2013)CrossRefGoogle Scholar
  88. 88.
    S. Nayak, P.U. Biedermann, M. Stratmann, A. Erbe, In situ infrared spectroscopic investigation of intermediates in the electrochemical oxygen reduction on n-Ge (100) in alkaline perchlorate and chloride electrolyte. Electrochim. Acta 106, 472–482 (2013)CrossRefGoogle Scholar
  89. 89.
    B.J. Messinger, K. Ulrich von Raben, R.K. Chang, P.W. Barber, Local fields at the surface of noble-metal microspheres. Phys. Rev. B 24, 649–657 (1981)Google Scholar
  90. 90.
    G. Vasan, A. Erbe, Incidence angle dependence of the enhancement factor in attenuated total reflection surface enhanced infrared absorption spectroscopy studied by numerical solution of the vectorial Maxwell equations. Phys. Chem. Chem. Phys. 14, 14702–14709 (2012)CrossRefGoogle Scholar
  91. 91.
    G. Vasan, Y. Chen, A. Erbe, Computation of surface-enhanced infrared absorption spectra of particles at a surface through the finite element method. J. Phys. Chem. C 115, 3025–3033 (2011)CrossRefGoogle Scholar
  92. 92.
    M. Fan, A.G. Brolo, Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability. ChemPhysChem 9, 1899–1907 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Andreas Erbe
    • 1
    Email author
  • Adnan Sarfraz
    • 1
  • Cigdem Toparli
    • 1
  • Kai Schwenzfeier
    • 1
  • Fang Niu
    • 1
  1. 1.Max-Planck-Institut für Eisenforschung GmbHDüsseldorfGermany

Personalised recommendations