Introduction to Soft Matter

  • Neus Vilanova
  • Ilja Karina Voets
Part of the Lecture Notes in Physics book series (LNP, volume 917)


In this introductory chapter we introduce the basic features and building blocks of soft matter focusing in particular on the role of interfaces. As the fundamentals of the behaviour of particles, surfactants, and polymers at interfaces are described, several classical physico-chemical concepts are introduced. A very brief historical overview of the fields of colloid and polymer science is given. Practical applications of soft matter science in areas like personal care, food technology, biology and materials science are outlined at the end of the chapter.


Surfactant Concentration Soft Matter Soft Material Prussian Blue Critical Micellar Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P.G. de Gennes, Soft Matter. Rev. Mod. Phys. 64(3), 645–648 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    K. Meister et al., Observation of Ice-like Water Layers at an Aqueous Protein Surface (submitted, 2014)Google Scholar
  3. 3.
    G. Gompper, J.K.G. Dhont, D. Richter, A unified view of soft matter systems? Eur. Phys. J. E 26(1–2), 1–2 (2008)CrossRefGoogle Scholar
  4. 4.
    I.K. Voets et al., DMSO-Induced Denaturation of Hen Egg White Lysozyme. J. Phys. Chem. B 114(16), 11875–11883 (2010)CrossRefGoogle Scholar
  5. 5.
    J. Perrin, Brownian Movement and Molecular Reality (Taylor and Francis, London, 1910)Google Scholar
  6. 6.
    A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322(8), 549–560 (1905)CrossRefzbMATHGoogle Scholar
  7. 7.
    P.N. Pusey, W. Vanmegen, Phase-behavior of concentrated suspensions of nearly hard colloidal spheres. Nature 320(6060), 340–342 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    A. Van Blaaderen et al., 3-Dimensional imaging of submicrometer colloidal particles in concentrated suspensions using confocal scanning laser microscopy. Langmuir 8(6), 1514–1517 (1992)CrossRefGoogle Scholar
  9. 9.
    W.K. Kegel, A. van Blaaderen, Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287(5451), 290–293 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    U. Gasser et al., Real-space imaging of nucleation and growth in colloidal crystallization. Science 292(5515), 258–262 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    E.R. Weeks et al., Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287(5453), 627–631 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    H.R. Vutukuri et al., Colloidal analogues of charged and uncharged polymer chains with tunable stiffness. Angewandte Chemie-International Edition 51(45), 11249–11253 (2012)CrossRefGoogle Scholar
  13. 13.
    S. Sacanna et al., Lock and key colloids. Nature 464(7288), 575–578 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Wang et al., Colloids with valence and specific directional bonding. Nature 491(7422), 51–55 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    S.C. Glotzer, M.J. Solomon, Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6(8), 557–562 (2007)CrossRefGoogle Scholar
  16. 16.
    E. Bianchi, R. Blaak, C.N. Likos, Patchy colloids: state of the art and perspectives. Phys. Chem. Chem. Phys. 13(14), 6397–6410 (2011)CrossRefGoogle Scholar
  17. 17.
    H. Staudinger, Über Polymerisation. Berichte der deutschen chemischen Gesellschaft (A and B Series) 53(6), 1073–1085 (1920)CrossRefGoogle Scholar
  18. 18.
    H. Staudinger, Über die Konstitution des Kautschuks (6. Mitteilung). Berichte der deutschen chemischen Gesellschaft (A and B Series) 57(7), 1203-1208 (1924)Google Scholar
  19. 19.
    R. Mulhaupt, Hermann Staudinger and the origin of macromolecular chemistry. Angewandte Chemie-International Edition 43(9), 1054–1063 (2004)CrossRefGoogle Scholar
  20. 20.
    T.F.A. de Greef, E.W. Meijer, Materials science—Supramolecular polymers. Nature 453(7192), 171–173 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    R.P. Sijbesma et al., Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278(5343), 1601–1604 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    L. Brunsveld et al., Supramolecular polymers. Chem. Rev. 101(12), 4071–4097 (2001)CrossRefGoogle Scholar
  23. 23.
    V. Simic, L. Bouteiller, M. Jalabert, Highly cooperative formation of bis-urea based supramolecular polymers. J. Am. Chem. Soc. 125(43), 13148–13154 (2003)CrossRefGoogle Scholar
  24. 24.
    J.M. Lehn, Supramolecular polymer chemistry—scope and perspectives. Polym. Int. 51(10), 825–839 (2002)CrossRefGoogle Scholar
  25. 25.
    J.M. Lehn, Toward complex matter: supramolecular chemistry and self-organization. Proc. Natl. Acad. Sci. 99(8), 4763 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    B.J.B. Folmer et al., Supramolecular polymer materials: Chain extension of telechelic polymers using a reactive hydrogen-bonding synthon. Adv. Mater. 12(12), 874–878 (2000)CrossRefGoogle Scholar
  27. 27.
    C.F. Lee et al., Spatial organization of the cell cytoplasm by position-dependent phase separation. Phys. Rev. Lett. 111(8) (2013)Google Scholar
  28. 28.
    J.K.J. van Duren et al., Relating the Morphology of Poly(p-phenylene vinylene)/Methanofullerene Blends to Solar-Cell Performance. Adv. Funct. Mater. 14(5), 425–434 (2004)CrossRefGoogle Scholar
  29. 29.
    K. Bergfeldt, L. Piculell, P. Linse, Segregation and association in mixed polymer solutions from Flory-Huggins model calculations. J. Phys. Chem. 100(9), 3680–3687 (1996)CrossRefGoogle Scholar
  30. 30.
    P. Kosovan et al., Amphiphilic graft copolymers in selective solvents: molecular dynamics simulations and scaling theory. Macromolecules 42(17), 6748–6760 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    E.B. Zhulina, O.V. Borisov, Theory of block polymer micelles: recent advances and current challenges. Macromolecules 45(11), 4429–4440 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    E.P.K. Currie, W. Norde, M.A.C. Stuart, Tethered polymer chains: surface chemistry and their impact on colloidal and surface properties. Adv. Colloid Interface Sci. 100, 205–265 (2003)CrossRefGoogle Scholar
  33. 33.
    M.E. Cates, Reptation of living polymers—dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules 20(9), 2289–2296 (1987)ADSCrossRefGoogle Scholar
  34. 34.
    R.H. Colby, Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions. Rheol. Acta 49(5), 425–442 (2010)CrossRefGoogle Scholar
  35. 35.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, vol. 73 (Oxford University Press, USA, 1988)Google Scholar
  36. 36.
    K. Matyjaszewski, N.V. Tsarevsky, Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 1(4), 276–288 (2009)CrossRefGoogle Scholar
  37. 37.
    J.N. Israelachvili, D.J. Mitchell, B.W. Ninham, Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc.-Faraday Trans. Ii 72, 1525–1568 (1976)CrossRefGoogle Scholar
  38. 38.
    K. Holmberg, B. Jonsson, B. Kronberg, B. Lindman, in Surfactants and Polymers in Aqueous Solutions (Wiley, New York, 2002)Google Scholar
  39. 39.
    M. Abkarian, A. Viallat, Vesicles and red blood cells in shear flow. Soft Matter 4(4), 653–657 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    J. Mattsson et al., Soft colloids make strong glasses. Nature 462(7269), 83–86 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    G.M. Pawar et al., Injectable hydrogels from segmented PEG-Bisurea copolymers. Biomacromolecules 13(12), 3966–3976 (2012)CrossRefGoogle Scholar
  42. 42.
    R.E. Kieltyka et al., Mesoscale modulation of supramolecular ureidopyrimidinone-based Poly(ethylene glycol) transient networks in water. J. Am. Chem. Soc. 135(30), 11159–11164 (2013)CrossRefGoogle Scholar
  43. 43.
    A. Pape et al., Mesoscale characterization of supramolecular transient networks using SAXS and rheology. Int. J. Mol. Sci. 15(1), 1096–1111 (2014)CrossRefGoogle Scholar
  44. 44.
    B.P. Binks, Particles as surfactants—similarities and differences. Curr. Opin. Colloid Interface Sci. 7(1–2), 21–41 (2002)CrossRefGoogle Scholar
  45. 45.
    R. Aveyard, B.P. Binks, J.H. Clint, Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci. 100, 503–546 (2003)CrossRefGoogle Scholar
  46. 46.
    Y. Chevalier, M.A. Bolzinger, Emulsions stabilized with solid nanoparticles: Pickering emulsions. colloids and surfaces A-physicochemical and engineering aspects 439, 23–34 (2013)Google Scholar
  47. 47.
    A. Scheludko, B.V. Toshev, D.T. Bojadjiev, Attachment of particles to a liquid surface (capillary theory of flotation). J. Chem. Soc.-Faraday Trans. I, 1976. 72, 2815–2828Google Scholar
  48. 48.
    H.-J. Butt, K. Graf, M. Kappl, Contact Angle Phenomena and Wetting, in Physics and Chemistry of Interfaces (Wiley-VCH Verlag GmbH & Co. KGaA, 2004), pp. 118–144Google Scholar
  49. 49.
    A. Vílchez et al., Macroporous polymers obtained in highly concentrated emulsions stabilized solely with magnetic nanoparticles. Langmuir 27(21), 13342–13352 (2011)CrossRefGoogle Scholar
  50. 50.
    Z. Chen et al., Light controlled reversible inversion of nanophosphor-stabilized pickering emulsions for biphasic enantioselective biocatalysis. J. Am. Chem. Soc. 136(20), 7498–7504 (2014)CrossRefGoogle Scholar
  51. 51.
    M.A.C. Stuart, T. Cosgrove, B. Vincent, Experimental aspects of polymer adsorption at solid-solution interfaces. Adv. Colloid Interface Sci. 24(2–3), 143–239 (1986)Google Scholar
  52. 52.
    T. Cosgrove, Colloid Science: Principles, Methods and Applications (Wiley, New York, 2010)Google Scholar
  53. 53.
    W.M. de Vos et al., Charge-driven and reversible assembly of ultra-dense polymer brushes: formation and antifouling properties of a zipper brush. Soft Matter 6(11), 2499–2507 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    D. Myers, Surfaces, Interfaces, and Colloids, Principles and Applications (Wiley, New York, 1999)Google Scholar
  55. 55.
    C.V. Kulkarni, R. Mezzenga, O. Glatter, Water-in-oil nanostructured emulsions: Towards the structural hierarchy of liquid crystalline materials. Soft Matter 6(21), 5615–5624 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    A. Yaghmur et al., Control of the internal structure of MLO-based isasomes by the addition of diglycerol monooleate and soybean phosphatidylcholine. Langmuir 22(24), 9919–9927 (2006)CrossRefGoogle Scholar
  57. 57.
    M.D.H.K. H. Uddin, C. Solans, Highly Concentrated Cubic Phase-Based Emulsions, in Structure-Performance Relationships in Surfactants, ed. by M. Dekker (Springer, New York, 2003), p. 599–626Google Scholar
  58. 58.
    C. Solans et al., Studies on macro- and microstructures of highly concentrated water-in-oil emulsions (gel emulsions). Langmuir 9(6), 1479–1482 (1993)CrossRefGoogle Scholar
  59. 59.
    J. Nestor et al., Facile synthesis of meso/macroporous dual materials with ordered mesopores using highly concentrated emulsions based on a cubic liquid crystal. Langmuir 29(1), 432–440 (2013)CrossRefGoogle Scholar
  60. 60.
    D.E. Smith et al., The bacteriophage phi 29 portal motor can package DNA against a large internal force. Nature 413(6857), 748–752 (2001)ADSCrossRefGoogle Scholar
  61. 61.
    S. Tzlil et al., Forces and pressures in DNA packaging and release from viral capsids. Biophys. J. 84(3), 1616–1627 (2003)ADSCrossRefGoogle Scholar
  62. 62.
    P.R. Banerjee et al., Cataract-associated mutant E107A of human gamma D-crystallin shows increased attraction to alpha-crystallin and enhanced light scattering. Proc. Natl. Acad. Sci. USA 108(2), 574–579 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    J.J. McManus et al., Altered phase diagram due to a single point mutation in human gamma D-crystallin. Proc. Natl. Acad. Sci. USA 104(43), 16856–16861 (2007)ADSCrossRefGoogle Scholar
  64. 64.
    J.F. Joanny, et al., The actin cortex as an active wetting layer. Eur. Phys. J. E. 36(5) (2013)Google Scholar
  65. 65.
    G. Calderó et al., Studies on controlled release of hydrophilic drugs from W/O high internal phase ratio emulsions. J. Pharm. Sci. 99(2), 701–711 (2010)CrossRefGoogle Scholar
  66. 66.
    G. Calderó, C. Solans, Polymeric O/W nano-emulsions obtained by the phase inversion composition (PIC) Method for biomedical nanoparticle preparation, in Emulsion Formation and Stability (2013), pp. 199–207Google Scholar
  67. 67.
    P. Izquierdo et al., A study on the influence of emulsion droplet size on the skin penetration of tetracaine. Skin Pharmacol. Physiol. 20(5), 263–270 (2007)CrossRefGoogle Scholar
  68. 68.
    S. Theisinger et al., Encapsulation of a fragrance via miniemulsion polymerization for temperature-controlled release. Macromol. Chem. Phys. 210(6), 411–420 (2009)CrossRefGoogle Scholar
  69. 69.
    D.L. Berthier, A. Herrmann, L. Ouali, Synthesis of hydroxypropyl cellulose derivatives modified with amphiphilic diblock copolymer side-chains for the slow release of volatile molecules. Polym. Chem. 2(9), 2093–2101 (2011)CrossRefGoogle Scholar
  70. 70.
    M. Philippe, Cosmetic Use of Amphoteric Polysaccharide Compounds Containing Cationic Polymer Chain, L’Oreal, Editor (2005)Google Scholar
  71. 71.
    J.M. Lehn, N. Giuseppone, A. Herrmann, Imine Based Liquid Crystals for the Controlled Release of Bioactive Materials, Firmenich, Editor (2007)Google Scholar
  72. 72.
    C. Lemoine et al., Solid Antiperspirant and/or Deodorant Composition in the Form of a Water-in-Oil Emulsion Based on Silicone Emulsifiers and on Waxes; Method for Treating Body Odours, L’Oreal, Editor (2010)Google Scholar
  73. 73.
    T. Harnsilawat, R. Pongsawatmanit, D.J. McClements, Stabilization of model beverage cloud emulsions using protein- polysaccharide electrostatic complexes formed at the oil-water interface. J. Agric. Food Chem. 54(15), 5540–5547 (2006)CrossRefGoogle Scholar
  74. 74.
    E. Dickinson, Milk protein interfacial layers and the relationship to emulsion stability and rheology. Colloids Surf. B 20(3), 197–210 (2001)MathSciNetCrossRefGoogle Scholar
  75. 75.
    D. Rousseau, Fat crystals and emulsion stability—A review. Food Res. Int. 33(1), 3–14 (2000)CrossRefGoogle Scholar
  76. 76.
    T.D. Dimitrova, F. Leal-Calderon, Rheological properties of highly concentrated protein-stabilized emulsions. Adv. Colloid Interface Sci. 108–109, 49–61 (2004)CrossRefGoogle Scholar
  77. 77.
    R. Mezzenga et al., Understanding foods as soft materials. Nat. Mater. (2005)Google Scholar
  78. 78.
    C.G. de Kruif, F. Weinbreck, R. de Vries, Complex coacervation of proteins and anionic polysaccharides. Curr. Opin. Colloid Interface Sci. 9(5), 340–349 (2004)CrossRefGoogle Scholar
  79. 79.
    F. Weinbreck, M. Minor, C.G. De Kruif, Microencapsulation of oils using whey protein/gum arabic coacervates. J. Microencapsul. 21(6), 667–679 (2004)CrossRefGoogle Scholar
  80. 80.
    M.B. Munk et al., Stability of whippable oil-in-water emulsions: Effect of monoglycerides on crystallization of palm kernel oil. Food Res. Int. 54(2), 1738–1745 (2013)CrossRefGoogle Scholar
  81. 81.
    L. Day, Proteins from land plants—Potential resources for human nutrition and food security. Trends Food Sci. Technol. 32(1), 25–42 (2013)CrossRefGoogle Scholar
  82. 82.
    F. Caruso et al., Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules. Langmuir 16(4), 1485–1488 (2000)MathSciNetCrossRefGoogle Scholar
  83. 83.
    Y. Wang, F. Caruso, Mesoporous silica spheres as supports for enzyme immobilization and encapsulation. Chem. Mater. 17(5), 953–961 (2005)CrossRefGoogle Scholar
  84. 84.
    X. Qiu et al., Studies on the drug release properties of polysaccharide multilayers encapsulated ibuprofen microparticles. Langmuir 17(17), 5375–5380 (2001)CrossRefGoogle Scholar
  85. 85.
    C.S. Peyratout, L. Dähne, Tailor-made polyelectrolyte microcapsules: From multilayers to smart containers. Angewandte Chemie—International Edition 43(29), 3762–3783 (2004)CrossRefGoogle Scholar
  86. 86.
    N. Vilanova et al., Fabrication of novel silicone capsules with tunable mechanical properties by microfluidic techniques. ACS Appl. Mater. Interfaces 5(11), 5247–5252 (2013)CrossRefGoogle Scholar
  87. 87.
    H.N. Yow, A.F. Routh, Formation of liquid core-polymer shell microcapsules. Soft Matter 2(11), 940–949 (2006)ADSCrossRefGoogle Scholar
  88. 88.
    Y. Wang, A.S. Angelatos, F. Caruso, Template synthesis of nanostructured materials via layer-by-layer assembly. Chem. Mater. 20(3), 848–858 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Macromolecular and Organic Chemistry, Physical Chemistry & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations