Deciding Subsumers of Least Fixpoint Concepts w.r.t. general \(\mathcal{EL}\)-TBoxes

  • Shasha Feng
  • Michel LudwigEmail author
  • Dirk Walther
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9324)


In this paper we provide a procedure for deciding subsumptions of the form \(\mathcal {T}\models \mathcal {C}\sqsubseteq E\), where \(\mathcal {C}\) is an \(\mathcal{ELU}_\mu \)-concept, E an \(\mathcal{ELU}\)-concept and \(\mathcal {T}\) a general \(\mathcal{EL}\)-TBox. Deciding such subsumptions can be used for computing the logical difference between general \(\mathcal{EL}\)-TBoxes. Our procedure is based on checking for the existence of a certain simulation between hypergraph representations of the set of subsumees of \(\mathcal {C}\) and of E w.r.t.\(\mathcal {T}\), respectively. With the aim of keeping the procedure implementable, we provide a detailed construction of such hypergraphs deliberately avoiding the use of intricate automata-theoretic techniques.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proceedings of IJCAI-05: the 19th International Joint Conference on Artificial Intelligence, pp. 364–369. Morgan-Kaufmann Publishers (2005)Google Scholar
  2. 2.
    Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope further. In: Proceedings of the OWLED 2008 DC Workshop on OWL: Experiences and Directions (2008)Google Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The description logic handbook: theory, implementation, and applications. Cambridge University Press, 2nd edition (2010)Google Scholar
  4. 4.
    Bradfield, J., Stirling, C.: Modal \(\mu \)-calculi. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, Studies in Logic and Practical Reasoning, vol. 3, pp. 721–756. Elsevier (2007)Google Scholar
  5. 5.
    Brandt, S.: Polynomial time reasoning in a description logic with existential restrictions, GCI axioms, and–what else? In: Proceedings of ECAI-04: the 16th European Conference on Artificial Intelligence, pp. 298–302. IOS Press (2004)Google Scholar
  6. 6.
    Ecke, A., Ludwig, M., Walther, D.: The concept difference for EL-terminologies using hypergraphs. In: Proceedings of DChanges-13: the International Workshop on (Document) Changes: Modeling, Detection, Storage and Visualization. CEUR-WS, vol. 1008 (2013)Google Scholar
  7. 7.
    Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in description logics with existential restrictions. In: Proceedings of IJCAI-99: the 16th International Joint Conference on Artificial Intelligence, pp. 96–101. Morgan-Kaufmann Publishers (1999)Google Scholar
  8. 8.
    Feng, S., Ludwig, M., Walther, D.: The logical difference for EL: from terminologies towards TBoxes. In: Proceedings of IWOST-15: the 1st International Workshop on Semantic Technologies. CEUR-WS (2015)Google Scholar
  9. 9.
    Janin, D., Walukiewicz, I.: Automata for the modal mu-calculus and related results. In: Wiedermann, J., Hájek, P. (eds.) Mathematical Foundations of Computer Science 1995. LNCS, vol. 969, pp. 552–562. Springer, Heidelberg (1995) CrossRefGoogle Scholar
  10. 10.
    Konev, B., Ludwig, M., Walther, D., Wolter, F.: The logical difference for the lightweight description logic EL. Journal of Artificial Intelligence Research (JAIR) 44, 633–708 (2012)zbMATHGoogle Scholar
  11. 11.
    Kozen, D.: Results on the propositional \(\mu \)-calculus. Theoretical Computer Science 27(3), 333–354 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ludwig, M., Walther, D.: The logical difference for ELHr-terminologies using hypergraphs. In: Proceedings of ECAI-14: the 21st European Conference on Artificial Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 555–560. IOS Press (2014)Google Scholar
  13. 13.
    Sattler, U., Vardi, M.Y.: The hybrid mgr-calculus. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, p. 76. Springer, Heidelberg (2001) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Jilin UniversityChangchunChina
  2. 2.Theoretical Computer ScienceTU DresdenDresdenGermany

Personalised recommendations