Advertisement

Axiomatization of General Concept Inclusions in Probabilistic Description Logics

  • Francesco Kriegel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9324)

Abstract

Probabilistic interpretations consist of a set of interpretations with a shared domain and a measure assigning a probability to each interpretation. Such structures can be obtained as results of repeated experiments, e.g., in biology, psychology, medicine, etc. A translation between probabilistic and crisp description logics is introduced and then utilized to reduce the construction of a base of general concept inclusions of a probabilistic interpretation to the crisp case for which a method for the axiomatization of a base of GCIs is well-known.

Keywords

Probabilistic description logics Machine learning  Knowledge base General concept inclusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Distel, F.: A finite basis for the set of EL-implications holding in a finite model. Tech. rep. 07–02. Dresden, Germany: Inst. für Theoretische Informatik. TU, Dresden (2007)Google Scholar
  2. 2.
    Baader, F., Distel, F.: A finite basis for the set of EL-implications holding in a finite model. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 46–61. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  3. 3.
    Borchmann, D., Distel, F., Kriegel, F.: Axiomatization of General Concept Inclusions from Finite Interpretations. LTCS-Report 15–13. Dresden, Germany: Chair for Automata Theory, Institute for Theoretical Computer Science, Technische Universität Dresden (2015)Google Scholar
  4. 4.
    Distel, F.: Learning Description Logic Knowledge Bases from Data using Methods from Formal Concept Analysis. PhD thesis. Dresden University of Technology, Dresden (2011)Google Scholar
  5. 5.
    Ecke, A., Peñaloza, R., Turhan, A.-Y.: Completion-based Generalization Inferences for the Description Logic \(\cal ELOR\) with Subjective Probabilities. International Journal of Approximate Reasoning 55(9), 1939–1970 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ecke, A., Peñaloza, R., Turhan, A.-Y.: Role-depth bounded least common subsumer in prob-\(\cal EL\) with nominals. In: Eiter, T., et al. (eds.) Proceedings of the 26th International Workshop on Description Logics, DL 2013, vol. 1014, pp. 670–688. CEUR-WS. Germany (2013)Google Scholar
  7. 7.
    Kriegel, F.: Extracting ALEQR(Self)-knowledge bases from graphs. In: Proceedings of the International Workshop on Social Network Analysis using Formal Concept Analysis, SNAFCA 2015. CEUR Workshop Proceedings. CEUR-WS.org (2015)Google Scholar
  8. 8.
    Lutz, C., Schröder, L.: Probabilistic description logics for subjective uncertainty. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth International Conference, KR 2010, Toronto, Ontario, Canada (May 9–13, 2010)Google Scholar
  9. 9.
    Peñaloza, R., Turhan, A.-Y.: Instance-Based non-standard inferences in \(\cal EL\) with subjective probabilities. In: Bobillo, F., Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2008-2010/UniDL 2010. LNCS, vol. 7123, pp. 80–98. Springer, Heidelberg (2013)Google Scholar
  10. 10.
    Peñaloza, R., Turhan, A.-Y.: Role-depth bounded least common subsumers by completion for \(\cal EL\)- and prob-\(\cal EL\)-TBoxes. In: Haarslev, V., Toman, D., Weddell, G. (eds.) Proc. of the 2010 Description Logic Workshop, DL 2010, vol. 573. CEUR-WS (2010)Google Scholar
  11. 11.
    Peñaloza, R., Turhan, A.-Y.: Towards Approximative Most Specific Concepts by Completion for EL with Subjective Probabilities. In: Lukasiewicz, T., Peñaloza, R., Turhan, A.-Y. (eds.) Proceedings of the First International Workshop on Uncertainty in Description Logics, UniDL 2010, vol. 613. CEUR-WS (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute for Theoretical Computer ScienceTU DresdenDresdenGermany

Personalised recommendations