International Conference on Algorithmic Learning Theory

Algorithmic Learning Theory pp 349-363 | Cite as

Solomonoff Induction Violates Nicod’s Criterion

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9355)

Abstract

Nicod’s criterion states that observing a black raven is evidence for the hypothesis H that all ravens are black. We show that Solomonoff induction does not satisfy Nicod’s criterion: there are time steps in which observing black ravens decreases the belief in H. Moreover, while observing any computable infinite string compatible with H, the belief in H decreases infinitely often when using the unnormalized Solomonoff prior, but only finitely often when using the normalized Solomonoff prior. We argue that the fault is not with Solomonoff induction; instead we should reject Nicod’s criterion.

Keywords

Bayesian reasoning Confirmation Disconfirmation Hempel’s paradox Equivalence condition Solomonoff normalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blackwell, D., Dubins, L.: Merging of opinions with increasing information. The Annals of Mathematical Statistics, 882–886 (1962)Google Scholar
  2. 2.
    Gács, P.: On the relation between descriptional complexity and algorithmic probability. Theoretical Computer Science 22(1–2), 71–93 (1983)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Good, I.J.: The paradox of confirmation. British Journal for the Philosophy of Science, 145–149 (1960)Google Scholar
  4. 4.
    Good, I.J.: The white shoe is a red herring. The British Journal for the Philosophy of Science 17(4), 322–322 (1967)CrossRefGoogle Scholar
  5. 5.
    Hempel, C.G.: Studies in the logic of confirmation (I.). Mind, 1–26 (1945)Google Scholar
  6. 6.
    Hempel, C.G.: The white shoe: No red herring. The British Journal for the Philosophy of Science 18(3), 239–240 (1967)CrossRefGoogle Scholar
  7. 7.
    Hutter, M.: New error bounds for Solomonoff prediction. Journal of Computer and System Sciences 62(4), 653–667 (2001)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hutter, M.: On universal prediction and Bayesian confirmation. Theoretical Computer Science 384(1), 33–48 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press (2003)Google Scholar
  10. 10.
    Levin, L.A.: Laws of information conservation (nongrowth) and aspects of the foundation of probability theory. Problemy Peredachi Informatsii 10(3), 30–35 (1974)MathSciNetGoogle Scholar
  11. 11.
    Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Applications. Texts in Computer Science, 3rd edn. Springer (2008)Google Scholar
  12. 12.
    Mackie, J.L.: The paradox of confirmation. British Journal for the Philosophy of Science, 265–277 (1963)Google Scholar
  13. 13.
    Maher, P.: Inductive logic and the ravens paradox. Philosophy of Science, 50–70 (1999)Google Scholar
  14. 14.
    Nicod, J.: Le Problème Logique de L’Induction. Presses Universitaires de France (1961)Google Scholar
  15. 15.
    Rathmanner, S., Hutter, M.: A philosophical treatise of universal induction. Entropy 13(6), 1076–1136 (2011)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Solomonoff, R.: A formal theory of inductive inference. Parts 1 and 2. Information and Control 7(1), 1–22 and 224–254 (1964)Google Scholar
  17. 17.
    Solomonoff, R.: Complexity-based induction systems: Comparisons and convergence theorems. IEEE Transactions on Information Theory 24(4), 422–432 (1978)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Swinburne, R.G.: The paradoxes of confirmation: A survey. American Philosophical Quarterly, 318–330 (1971)Google Scholar
  19. 19.
    Vranas, P.B.: Hempel’s raven paradox: A lacuna in the standard Bayesian solution. The British Journal for the Philosophy of Science 55(3), 545–560 (2004)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Wood, I., Sunehag, P., Hutter, M.: (Non-)equivalence of universal priors. In: Dowe, D.L. (ed.) Solomonoff Festschrift. LNCS, vol. 7070, pp. 417–425. Springer, Heidelberg (2013) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Australian National UniversityCanberraAustralia

Personalised recommendations