Advertisement

Influence of Ammonia Emissions on Aerosol Formation in Northern and Central Europe

  • Anna M. BackesEmail author
  • Armin Aulinger
  • Johannes Bieser
  • Volker Matthias
  • Markus Quante
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

High concentrations of particles pose a threat to human health and the environment. In this study the influence of ammonia (NH3) emissions on aerosol concentration in central Europe is investigated. Depending on crop growth, temperature and local legislation individual temporal profiles for fertilizer and manure application are calculated for each model grid cell of the SMOKE-EU emission model. The emission data was used as input for the CMAQ chemical transport model. Comparisons to EMEP observations indicate that the new ammonia emission module leads to a better agreement of modeled and observed concentrations. The model was used then to assess the influence of emission changes. It was found that a reduction of ammonia emissions by 50 % lead to a 24 % reduction of total PM2.5 concentrations in the model domain during winter, mainly driven by reduced formation of ammonium nitrate.

Keywords

Ammonia Emission Chemistry Transport Model Normalize Mean Bias Normalize Mean Error Intensive Livestock Farming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amann M, Bertok I, Borken-Kleefeld J, Heyes C, Cofala J, Höglund-isaksson L, Klimont Z, Rafaj P, Schöpp W, Wagner F (2011) Cost-effective emission reductions to improve air quality in Europe in 2020. In: NEC scenario analysis report Nr. 8. (8)Google Scholar
  2. Denier van der Gon HD, Hendriks C, Kuenen J, Segers A, Visschedijk A (2011) TNO Report. Description of current temporal emission patterns and sensitivity of predicted AQ for temporal emission patterns. EU FP7 MACC deliverable report D_D-EMIS_1.3Google Scholar
  3. EC (2009) Study on variation of manure N efficiency throughout Europe, Annex1. http://ec.europa.eu/environment/water/water-nitrates/pdf/Annex_1_Man_N_Effic.pdf
  4. FAO (2007). Gridded livestock of the world 2007. G.R.W.Wint and T.P.Robinson. http://www.fao.org/Ag/againfo/resources/en/glw/home.html. Accessed 11 Nov 2014
  5. FAOSTAT (2014) Food Supply—Livestock and Fish Primary Equivalent. http://faostat3.fao.org/download/D/FS/E. Accessed 10 Nov 2014)
  6. Gyldenkærne S, Skjøth CA, Hertel O, Ellermann T (2005) A dynamical ammonia emission parameterization for use in air pollution models. J Geophys Res. doi: 10.1029/2004JD005459 Google Scholar
  7. Schaap M, Roemer M, Sauter F, Boersen G, Timmermans R (2005) LOTOS-EUROS: Documentation. http://www.lotos-euros.nl/doc/LOTOS-EUROS-v11-documentation.pdf (17.11.2014)
  8. Skjøth CA, Hertel O, Gyldenkærne S, Ellermann T (2004) Implementing a dynamical ammonia emission parameterization in the large-scale air pollution model ACDEP. J Geophys Res 109(D6):D06306. doi: 10.1029/2003JD003895 Google Scholar
  9. Willett WC, Skerrett PJ (2005) Eat drink and be healthy: the Harvard Medical School guide to healthy eating. Free Press, New YorkGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anna M. Backes
    • 1
    Email author
  • Armin Aulinger
    • 1
  • Johannes Bieser
    • 1
    • 2
  • Volker Matthias
    • 1
  • Markus Quante
    • 1
  1. 1.Helmholtz-Zentrum Geesthacht, Institute of Coastal ResearchGeesthachtGermany
  2. 2.DLR—Deutsches Luft und Raumfahrtzentrum, Institut für Physik der AtmosphäreWeßlingGermany

Personalised recommendations