Application of a New Ridge Estimator of the Inverse Covariance Matrix to the Reconstruction of Gene-Gene Interaction Networks

  • Wessel N. van WieringenEmail author
  • Carel F. W. Peeters
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8623)


A proper ridge estimator of the inverse covariance matrix is presented. We study the properties of this estimator in relation to other ridge-type estimators. In the context of Gaussian graphical modeling, we compare the proposed estimator to the graphical lasso. This work is a brief exposé of the technical developments in [1], focussing on applications in gene-gene interaction network reconstruction.


Gaussian graphical model Gene-gene interaction networks Multivariate normal Penalized estimation Precision matrix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van Wieringen, W.N., Peeters, C.F.W.: Ridge Estimation of Inverse Covariance Matrices From High-Dimensional Data. arXiv:1403.0904 [stat.ME] (2014)Google Scholar
  2. 2.
    Hoerl, A.E., Kennard, R.W.: Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 12, 55–67 (1970)CrossRefzbMATHGoogle Scholar
  3. 3.
    Schäfer, J., Strimmer, K.: A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics. Stat. Appl. Genet. Mo. B. 4, Article 32 (2005)Google Scholar
  4. 4.
    Ledoit, O., Wolf, M.: A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices. J. Multivariate Anal. 88, 365–411 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fisher, T.J., Sun, X.: Improved Stein-Type Shrinkage Estimators for the High-Dimensional Multivariate Normal Covariance Matrix. Comput. Stat. Data An. 55, 1909–1918 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Vujačić, I., Abbruzzo, A., Wit, E.C.: A Computationally Fast Alternative to Cross-Validation in Penalized Gaussian Graphical Models. arXiv: 1309.621v2 [stat.ME] (2014)Google Scholar
  7. 7.
    Banerjee, O., El Ghaoui, L., d’Aspremont, A.: Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data. J. Mach. Learn. Res. 9, 485–516 (2008)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Friedman, J., Hastie, T., Tibshirani, R.: Sparse Inverse Covariance Estimation with the Graphical Lasso. Biostatistics 9, 432–441 (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Friedman, J., Hastie, T., Tibshirani, R.: glasso: Graphical Lasso-Estimation of Gaussian Graphical Models. R package, version 1.8 (2014),
  10. 10.
    Schröder, M., Haibe-Kains, B., Culhane, A., Sotiriou, C., Bontempi, G., Quackenbush, J.: breastCancerMAINZ; breastCancerTRANSBIG; breastCancerUNT; breastCancerUPP; breastCancerVDX. R packages, versions 1.0.6 (2011),
  11. 11.
    Kanehisa, M., Goto, S.: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000)CrossRefGoogle Scholar
  12. 12.
    The Cancer Genome Atlas,
  13. 13.
    The National Center for Biotechnology Information,
  14. 14.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2011)Google Scholar
  15. 15.
    Peeters, C.F.W., van Wieringen, W.N.: rags2ridges: Ridge Estimation of Precision Matrices from High-Dimensional Data. R package, version 1.3 (2014),
  16. 16.
    Comprehensive R Archive Network,

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Wessel N. van Wieringen
    • 1
    • 2
    Email author
  • Carel F. W. Peeters
    • 1
  1. 1.Department of Epidemiology and BiostatisticsVU University medical centerAmsterdamThe Netherlands
  2. 2.Deptartment of MathematicsVU University AmsterdamAmsterdamThe Netherlands

Personalised recommendations