Skip to main content

Rational Curves on Foliated Varieties

  • Conference paper
Foliation Theory in Algebraic Geometry

Part of the book series: Simons Symposia ((SISY))

Abstract

The article refines and generalises the study of deformations of a morphism along a foliation begun by Y. Miyaoka, [Mi2]. The key ingredients are the algebrisation of the graphic neighbourhood, see Fact 3.3.1, which reduces the problem from the transcendental to the algebraic, and a p-adic variation of Mori’s bend and break in order to overcome the “naive failure”, see Remark 3.2.3, of the method in the required generality. Qualitatively the results are optimal for foliations of all ranks in all dimensions, and are quantitatively optimal for foliations by curves, for which the further precision of a cone theorem is provided.

An erratum to this chapter can be found at 10.1007/978-3-319-24460-0_8

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Concomitantly with the preparation of the original pre-print, c. may 2000, J.-B. Bost, [Bo], used what may be considered an arithmetic version of this trick which independently led him to discover the geometric variant, and its higher dimensional generalisations à la § 2.1.

References

  1. Arakelov SJu (1971) Families of algebraic curves with fixed degeneracies. Izv Akad Nauk SSR Ser Mat 35:1269–1293

    MathSciNet  Google Scholar 

  2. Bierstone E, Milman P (1997) Canonical desingularisation in characteristic zero by blowing up the maximum strata of a local invariant. Invent Math 128:207–302

    Article  MathSciNet  MATH  Google Scholar 

  3. Bogomolov FA (1977) Families of curves on surfaces of general type. Sov Math Dokl 18:279–342

    MathSciNet  Google Scholar 

  4. Bogomolov FA (1978) Holomorphic tensors and vector bundles on projective varieties. Math USSR Izv 13:499–555

    Article  MATH  Google Scholar 

  5. Bost J-B (2001) Algebraic leaves of algebraic foliations over number fields. Publ Math Inst Hautes Études Sci 93:161–221

    Article  MathSciNet  MATH  Google Scholar 

  6. Brunella M (1999) Minimal models of foliated algebraic surfaces. Bull SMF 127:289–305

    MathSciNet  MATH  Google Scholar 

  7. Brunella M (2000) Birational geometry of foliations. Monografías de Mat IMPA, 138 pp

    MATH  Google Scholar 

  8. Debarre O (2001) Higher-dimensional algebraic geometry. Springer, Berlin

    Book  MATH  Google Scholar 

  9. de Jong A, Starr J (2003) Every rationally connected variety over the function field of a curve has a rational point, Amer. J. Math, 125:567–580

    Article  MathSciNet  MATH  Google Scholar 

  10. Graber T, Harris J, Starr J (2003) Families of rationally connected varieties. J Am Math Soc 16:57–67

    Article  MathSciNet  MATH  Google Scholar 

  11. Grothendieck A, Raynaud M (2003) Revêtements étales et grou pe fondamental (SGA 1). Documents Mathématiques, vol 3. Société Mathématique de France, Paris

    Google Scholar 

  12. Kollár J (1996) Rational curves on algebraic varieties. Springer, Berlin

    Book  MATH  Google Scholar 

  13. Kollár J, Miyaoka Y, Mori S (1992) Rationally connected varieties. J Alg Geom 1:429–448

    MathSciNet  MATH  Google Scholar 

  14. McQuillan M (1998) Diophantine approximation and foliations. Inst Hautes Études Sci Publ Math 87:121–174

    Article  MathSciNet  MATH  Google Scholar 

  15. McQuillan M (2008) Canonical models of foliations. Pure Appl Math Q 4:877–1012

    Article  MathSciNet  MATH  Google Scholar 

  16. McQuillan M, Panazzolo D (2013) Almost étale resolution of foliations. J Differ Geom 95:279–319

    MathSciNet  MATH  Google Scholar 

  17. Miyaoka Y (1983) Algebraic surfaces with positive index. Prog Math 39:281–301

    MathSciNet  Google Scholar 

  18. Miyaoka Y (1987) Deformations of morphisms along a foliation. Proc Symp Math 46:269–331

    MathSciNet  Google Scholar 

  19. Miyaoka Y, Mori S (1986) A numerical criterion for uniruledness. Ann Math 124:65–69

    Article  MathSciNet  MATH  Google Scholar 

  20. Shepherd-Barron NI (1992) Miyaoka’s theorems. Astérisque 211:103–114

    MATH  Google Scholar 

  21. Szpiro L (1990) Séminaire sur les pinceaux de courbes elliptiques. Astérisque 183:7–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael McQuillan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bogomolov, F., McQuillan, M. (2016). Rational Curves on Foliated Varieties. In: Cascini, P., McKernan, J., Pereira, J.V. (eds) Foliation Theory in Algebraic Geometry. Simons Symposia. Springer, Cham. https://doi.org/10.1007/978-3-319-24460-0_2

Download citation

Publish with us

Policies and ethics