Cell Crawling Driven by Spontaneous Actin Polymerization Waves

  • Karsten KruseEmail author
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Cell motility is a signature of life. Crawling of eukaryotic cells on solid substrates is, for example, used to feed, to evade unfavorable environments, or to heal wounds and to fight pathogens in organisms. This process is driven by the actin cytoskeleton and can occur in the absence of external cues. The crawling of some cells appears to be random on large time scales, whereas others move directionally with a high persistence. The latter is even observed for cell fragments not containing the nucleus or microtubules. How the actin cytoskeleton is orchestrated during spontaneous cell motility is largely unknown. In this context, spontaneous polymerization waves that have been observed in many cell types offer a promising concept. Here, we discuss theoretical approaches for studying cell motility driven by spontaneous actin waves. We start by reviewing experimental results. Then, we give an introduction into physical descriptions of actin dynamics and discuss possible mechanisms for wave generation. In the next step, we describe methods to theoretically study the coupling of the actin network to the cell membrane. Our analysis shows that spontaneous polymerization waves offer a unifying framework for explaining directional and erratic cell motility. We conclude by indicating possible directions of future studies.


Actin Filament Polarization Field Molecular Motor Actin Monomer Filament Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I thank my past and current collaborators, notably, I.S. Aranson, K. Doubrovinski, A. Dreher, and C. Erlenkamper, for countless interesting discussions on actin waves and cell motility. The work was funded in part by SFB 1027 of Deutsche Forschungsgemeinschaft.

Supplementary material

327960_1_En_2_MOESM1_ESM.mpg (1.4 mb)
ch2_video1.mpg (1,444 KB)
327960_1_En_2_MOESM2_ESM.mpg (1.6 mb)
ch2_video2.mpg (1,671 KB)

ch2_video3.mpg (1,666 KB)

ch2_video4.mpg (1,666 KB)

ch2_video5.mpg (1,666 KB)


  1. 1.
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of The Cell, 5th edn. (Garland Science, New York, 2008)Google Scholar
  2. 2.
    F. Backouche, L. Haviv, D. Groswasser, A. Bernheim-Groswasser, Active gels: dynamics of patterning and self-organization. Phys. Biol. 3, 264–273 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    A. Bernheim-Groswasser, S. Wiesner, R.M. Golsteyn, M.-F. Carlier, C. Sykes, The dynamics of actin-based motility depend on surface parameters. Nature 417, 308–311 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    E. Bernitt, C.G. Koh, N. Gov, H.-G. Döbereiner, Dynamics of actin waves on patterned substrates: a quantitative analysis of circular dorsal ruffles. PLoS One 10, e0115857 (2015)CrossRefGoogle Scholar
  5. 5.
    J.S. Bois, F. Julicher, S.W. Grill, Pattern formation in active fluids. Phys. Rev. Lett. 106, 028103 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    M. Bonny, E. Fischer-Friedrich, M. Loose, P. Schwille, K. Kruse, Membrane binding of MinE allows for a comprehensive description of min-protein pattern formation. PLoS Comput. Biol. 9, e1003347 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    T. Bretschneider, S. Diez, K. Anderson, J. Heuser, M. Clarke, A. Muller-Taubenberger, J. Kohler, G. Gerisch, Dynamic actin patterns and Arp2/3 assembly at the substrate-attached surface of motile cells. Curr. Biol. 14, 1–10 (2004)CrossRefGoogle Scholar
  8. 8.
    T. Bretschneider, K. Anderson, M. Ecke, A. Mueller-Taubenberger, B. Schroth-Diez, H.C. Ishikawa-Ankerhold, G. Gerisch, The three-dimensional dynamics of actin waves, a model of cytoskeletal self-organization. Biophys. J. 96, 2888–2900 (2009)Google Scholar
  9. 9.
    D.T. Burnette, S. Manley, P. Sengupta, R. Sougrat, M.W. Davidson, B. Kachar, J. Lippincott-Schwartz, A role for actin arcs in the leading-edge advance of migrating cells. Nat. Cell Biol. 13, 371–382 (2011)CrossRefGoogle Scholar
  10. 10.
    L.A. Cameron, M.J. Footer, A. van Oudenaarden, J.A. Theriot, Motility of ActA protein-coated microspheres driven by actin polymerization. Proc. Natl. Acad. Sci. U.S.A. 96, 4908–4913 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    A.E. Carlsson, Dendritic actin filament nucleation causes traveling waves and patches. Phys. Rev. Lett. 104, 228102 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    L.B. Case, C. Waterman, Adhesive F-actin waves: a novel integrin-mediated adhesion complex coupled to ventral actin polymerization. PLoS One 6, e26631 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    H.-G. Doebereiner, B.J. Dubin-Thaler, J.M. Hofman, H.S. Xenias, T.N. Sims, G. Giannone, M.L. Dustin, C.H. Wiggins, M.P. Sheetz, Lateral membrane waves constitute a universal dynamic pattern of motile cells. Phys. Rev. Lett. 97, 038102 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    K. Doubrovinski, K. Kruse, Self-organization of treadmilling filaments. Phys. Rev. Lett. 99, 228104 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    K. Doubrovinski, K. Kruse, Cytoskeletal waves in the absence of molecular motors. Europhys. Lett. 83, 18003 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    K. Doubrovinski, K. Kruse, Self-organization in systems of treadmilling filaments. Eur. Phys. J. E 31, 95–104 (2010)CrossRefGoogle Scholar
  17. 17.
    K. Doubrovinski, K. Kruse, Cell motility resulting from spontaneous polymerization waves. Phys. Rev. Lett. 107, 258103 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    A. Dreher, I.S. Aranson, K. Kruse, Spiral actin-polymerization waves can generate amoeboidal cell crawling. New J. Phys. 16, 055007 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    M.K. Driscoll, X. Sun, C. Guven, J.T. Fourkas, W. Losert, Cellular contact guidance through dynamic sensing of nanotopography. ACS Nano 8, 3546–3555 (2014)CrossRefGoogle Scholar
  20. 20.
    C. Erlenkämper, K. Kruse, Treadmilling and length distributions of active polar filaments. J. Chem. Phys. 139, 164907 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    U. Euteneuer, M. Schliwa, Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature 310, 58–61 (1984)ADSCrossRefGoogle Scholar
  22. 22.
    F. Gerbal, P. Chaikin, Y. Rabin, J. Prost, An elastic analysis of Listeria monocytogenes propulsion. Biophys. J. 79, 2259–2275 (2000)CrossRefGoogle Scholar
  23. 23.
    M. Gerhardt, M. Ecke, M. Walz, A. Stengl, C. Beta, G. Gerisch, Actin and PIP3 waves in giant cells reveal the inherent length scale of an excited state. J. Cell Sci. 127, 4507–4517 (2014)CrossRefGoogle Scholar
  24. 24.
    G. Gerisch, T. Bretschneider, A. Muller-Taubenberger, E. Simmeth, M. Ecke, S. Diez, K. Anderson, Mobile actin clusters and traveling waves in cells recovering from actin depolymerization. Biophys. J. 87, 3493–3503 (2004)Google Scholar
  25. 25.
    A. Gholami, M. Enculescu, M. Falcke, Membrane waves driven by forces from actin filaments. New J. Phys. 14, 115002 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    G. Giannone, B.J. Dubin-Thaler, H.-G. Dobereiner, N. Kieffer, A.R. Bresnick, M.P. Sheetz, Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116, 431–443 (2004)CrossRefGoogle Scholar
  27. 27.
    E. Gouin, M.D. Welch, P. Cossart, Actin-based motility of intracellular pathogens. Curr. Opin. Microbiol. 8, 35–45 (2005)CrossRefGoogle Scholar
  28. 28.
    N.S. Gov, A. Gopinathan, Dynamics of membranes driven by actin polymerization. Biophys. J. 90, 454–469 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    S. Guenther, K. Kruse, Spontaneous waves in muscle fibres. New J. Phys. 9, 417–417 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    C.-H. Huang, M. Tang, C. Shi, P.A. Iglesias, P.N. Devreotes, An excitable signal integrator couples to an idling cytoskeletal oscillator to drive cell migration. Nat. Cell Biol. 15, 1307–1318 (2013)CrossRefGoogle Scholar
  31. 31.
    K.L. Hui, S.I. Kwak, A. Upadhyaya, Adhesion-dependent modulation of actin dynamics in jurkat T cells. Cytoskeleton (Hoboken) 71, 119–135 (2014)CrossRefGoogle Scholar
  32. 32.
    H.U. Keller, M. Bessis, Migration and chemotaxis of anucleate cytoplasmic leukocyte fragments. Nature 258, 723–724 (1975)ADSCrossRefGoogle Scholar
  33. 33.
    A.J. Koch, H. Meinhardt, Biological pattern-formation - from basic mechanisms to complex structures. Rev. Mod. Phys. 66, 1481–1507 (1994)ADSCrossRefGoogle Scholar
  34. 34.
    K. Kruse, J.-F. Joanny, F. Julicher, J. Prost, K. Sekimoto, Asters, vortices, and rotating spirals in active gels of polar filaments. Phys. Rev. Lett. 92, 078101 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    T.P. Loisel, R. Boujemaa, D. Pantaloni, M.F. Carlier, Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    M.L. Lombardi, D.A. Knecht, M. Dembo, J. Lee, Traction force microscopy in Dictyostelium reveals distinct roles for myosin II motor and actin-crosslinking activity in polarized cell movement. J. Cell Sci. 120, 1624–1634 (2007)CrossRefGoogle Scholar
  37. 37.
    M. Loose, E. Fischer-Friedrich, J. Ries, K. Kruse, P. Schwille, Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320, 789–792 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    M. Loose, K. Kruse, P. Schwille, Protein self-organization: lessons from the min system. Annu. Rev. Biophys. 40, 315–336 (2011)CrossRefGoogle Scholar
  39. 39.
    M. Machacek, G. Danuser, Morphodynamic profiling of protrusion phenotypes. Biophys. J. 90, 1439–1452 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    S.E. Malawista, A. De Boisfleury Chevance, The cytokineplast - purified, stable, and functional motile machinery from human-blood polymorphonuclear leukocytes - possible formative role of heat-induced centrosomal dysfunction. J. Cell Biol. 95, 960–973 (1982)CrossRefGoogle Scholar
  41. 41.
    J.T. Mandeville, R.N. Ghosh, F.R. Maxfield, Intracellular calcium levels correlate with speed and persistent forward motion in migrating neutrophils. Biophys. J. 68, 1207–1217 (1995)CrossRefGoogle Scholar
  42. 42.
    A.C. Martin, M. Kaschube, E.F. Wieschaus, Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457, 495–499 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    K. Mellstrom, A.S. Hoglund, M. Nister, C.H. Heldin, B. Westermark, U. Lindberg, The effect of platelet-derived growth-factor on morphology and motility of human glial-cells. J. Muscle Res. Cell Motil. 4, 589–609 (1983)CrossRefGoogle Scholar
  44. 44.
    A. Millius, S.N. Dandekar, A.R. Houk, O.D. Weiner, Neutrophils establish rapid and robust WAVE complex polarity in an actin-dependent fashion. Curr. Biol. 19, 253–259 (2009)CrossRefGoogle Scholar
  45. 45.
    K. Murthy, P. Wadsworth, Dual role for microtubules in regulating cortical contractility during cytokinesis. J. Cell Sci. 121, 2350–2359 (2008)CrossRefGoogle Scholar
  46. 46.
    S. Najem, M. Grant, Phase-field approach to chemotactic driving of neutrophil morphodynamics. Phys. Rev. E 88, 034702 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    F.J. Nedelec, T. Surrey, A.C. Maggs, S. Leibler, Self-organization of microtubules and motors. Nature 389, 305–308 (1997)ADSCrossRefGoogle Scholar
  48. 48.
    N. Okamura, S. Ishiwata, Spontaneous oscillatory contraction of sarcomeres in skeletal myofibrils. J. Muscle Res. Cell Motil. 9, 111–119 (1988)CrossRefGoogle Scholar
  49. 49.
    B. Peleg, A. Disanza, G. Scita, N. Gov, Propagating cell-membrane waves driven by curved activators of actin polymerization. PLoS One 6, e18635 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    P.Y. Placais, M. Balland, T. Guerin, J.-F. Joanny, P. Martin, Spontaneous oscillations of a minimal actomyosin system under elastic loading. Phys. Rev. Lett. 103, 158102 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    T.D. Pollard, Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 36, 451–477 (2007)CrossRefGoogle Scholar
  52. 52.
    T.D. Pollard, G.G. Borisy, Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003)CrossRefGoogle Scholar
  53. 53.
    J. Prost, C. Barbetta, J.-F. Joanny, Dynamical control of the shape and size of stereocilia and microvilli. Biophys. J. 93, 1124–1133 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    J. Prost, F. Jülicher, J.-F. Joanny, Active gel physics. Nat. Phys. 11, 111–117 (2015)CrossRefGoogle Scholar
  55. 55.
    M. Radszuweit, S. Alonso, H. Engel, M. Bär, Intracellular mechanochemical waves in an active poroelastic model. Phys. Rev. Lett. 110, 138102 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    M. Radszuweit, H. Engel, M. Bär, An active poroelastic model for mechanochemical patterns in protoplasmic droplets of Physarum polycephalum. PLoS One 9, e99220 (2014)Google Scholar
  57. 57.
    G.L. Ryan, N. Watanabe, D. Vavylonis, A review of models of fluctuating protrusion and retraction patterns at the leading edge of motile cells. Cytoskeleton (Hoboken) 69, 195–206 (2012)CrossRefGoogle Scholar
  58. 58.
    D. Sasaki, H. Fujita, N. Fukuda, S. Kurihara, S. Ishiwata, Auto-oscillations of skinned myocardium correlating with heartbeat. J. Muscle Res. Cell Motil. 26, 93–101 (2005)CrossRefGoogle Scholar
  59. 59.
    V. Schaller, C. Weber, C. Semmrich, E. Frey, A.R. Bausch, Polar patterns of driven filaments. Nature 467, 73–77 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    D. Shao, W.-J. Rappel, H. Levine, Computational model for cell morphodynamics. Phys. Rev. Lett. 105, 108104 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    A.D. Shenderov, M.P. Sheetz, Inversely correlated cycles in speed and turning in an ameba: an oscillatory model of cell locomotion. Biophys. J. 72, 2382–2389 (1997)ADSCrossRefGoogle Scholar
  62. 62.
    R. Shlomovitz, N.S. Gov, Membrane waves driven by actin and myosin. Phys. Rev. Lett. 98, 168103 (2007)ADSCrossRefGoogle Scholar
  63. 63.
    J. Solon, A. Kaya-Copur, J. Colombelli, D. Brunner, Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137, 1331–1342 (2009)CrossRefGoogle Scholar
  64. 64.
    S. Takagi, T. Ueda, Emergence and transitions of dynamic patterns of thickness oscillation of the plasmodium of the true slime mold Physarum polycephalum. Physica D 237, 420–427 (2008)Google Scholar
  65. 65.
    S. Takagi, T. Ueda, Annihilation and creation of rotating waves by a local light pulse in a protoplasmic droplet of the Physarum plasmodium. Physica D 239, 873–878 (2010)Google Scholar
  66. 66.
    T. Takenawa, S. Suetsugu, The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat. Rev. Mol. Cell Bio. 8, 37–48 (2007)CrossRefGoogle Scholar
  67. 67.
    A.M. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237, 37–72 (1952)ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    D.M. Veltman, J.S. King, L.M. Machesky, R.H. Insall, SCAR knockouts in Dictyostelium: WASP assumes SCAR’s position and upstream regulators in pseudopods. J. Cell Biol. 198, 501–508 (2012)CrossRefGoogle Scholar
  69. 69.
    M.G. Vicker, Reaction-diffusion waves of actin filament polymerization/depolymerization in Dictyostelium pseudopodium extension and cell locomotion. Biophys. Chem. 84, 87–98 (2000)CrossRefGoogle Scholar
  70. 70.
    M.G. Vicker, Eukaryotic cell locomotion depends on the propagation of self-organized reaction-diffusion waves and oscillations of actin filament assembly. Exp. Cell Res. 275, 54–66 (2002)CrossRefGoogle Scholar
  71. 71.
    A. Wegner, Head to tail polymerization of actin. J. Mol. Biol. 108, 139–150 (1976)CrossRefGoogle Scholar
  72. 72.
    O.D. Weiner, W.A. Marganski, L.F. Wu, S.J. Altschuler, M.W. Kirschner, An actin-based wave generator organizes cell motility. PLoS Biol. 5, e221 (2007)CrossRefGoogle Scholar
  73. 73.
    S. Whitelam, T. Bretschneider, N.J. Burroughs, Transformation from spots to waves in a model of actin pattern formation. Phys. Rev. Lett. 102, 98103 (2009)ADSCrossRefGoogle Scholar
  74. 74.
    F. Ziebert, S. Swaminathan, I.S. Aranson, Model for self-polarization and motility of keratocyte fragments. J. R. Soc. Interface 9, 1084–1092 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Theoretical PhysicsSaarland UniversitySaarbrückenGermany

Personalised recommendations