Creativity and Universality in Language pp 59-83 | Cite as

# Dynamics on Expanding Spaces: Modeling the Emergence of Novelties

## Abstract

Novelties are part of our daily lives. We constantly adopt new technologies, conceive new ideas, meet new people, and experiment with new situations. Occasionally, we as individual, in a complicated cognitive and sometimes fortuitous process, come up with something that is not only new to us, but to our entire society so that what is a personal novelty can turn into an innovation at a global level. Innovations occur throughout social, biological, and technological systems and, though we perceive them as a very natural ingredient of our human experience, little is known about the processes determining their emergence. Still the statistical occurrence of innovations shows striking regularities that represent a starting point to get a deeper insight in the whole phenomenology. This paper represents a small step in that direction, focusing on reviewing the scientific attempts to effectively model the emergence of the new and its regularities, with an emphasis on more recent contributions: from the plain Simon’s model tracing back to the 1950s, to the newest model of Polya’s urn with triggering of one novelty by another. What seems to be key in the successful modeling schemes proposed so far is the idea of looking at evolution as a path in a complex space, physical, conceptual, biological, and technological, whose structure and topology get continuously reshaped and expanded by the occurrence of the new. Mathematically, it is very interesting to look at the consequences of the interplay between the “actual” and the “possible” and this is the aim of this short review.

## Keywords

Preferential Attachment Network Growth Polya Model Albert Model Preferential Attachment Rule## References

- 1.North, M.: Novelty: A History of the New (University of Chicago Press, Chicago 2013)Google Scholar
- 2.Zabell, S.L.: Synthese
**90**(2), 205 (1992)CrossRefGoogle Scholar - 3.Jacob, F.: The Possible and the Actual. University of Washington Press, Washington (1982)Google Scholar
- 4.Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York (1993)Google Scholar
- 5.Kauffman, S.A.: Investigations. Oxford University Press, New York (2000)Google Scholar
- 6.Johnson, S.: Where Good Ideas Come From: The Natural History of Innovation. Riverhead Hardcover, New York (2010)Google Scholar
- 7.Kauffman, S., Thurner, S., Hanel, R.: Scientific American (online) (2008)Google Scholar
- 8.Thurner, S., Klimek, P., Hanel, R.: New J. Phys.
**12**, 075029 (2010)CrossRefGoogle Scholar - 9.Solé, R.V., Valverde, S., Casals, M.R., Kauffman, S.A., Farmer, D., Eldredge, N.: Complexity
**18**(4), 15 (2013)CrossRefGoogle Scholar - 10.Felin, T., Kauffman, S.A., Koppl, R., Longo, G.: Strateg. Entrep. J.
**8**(4), 269 (2014)CrossRefGoogle Scholar - 11.Buchanan, M.: Nat. Phys.
**10**, 243 (2014)CrossRefGoogle Scholar - 12.Tria, F., Loreto, V., Servedio, V.D.P., Strogatz, S.H.: Nature Scientific Reports
**4**(2014)Google Scholar - 13.Hart, M.: Project Gutenberg (1971). http://www.gutenberg.org/
- 14.Schachter, J.: del.icio.us (2003). http://delicious.com/
- 15.De Morgan, A.: An Essay on Probabilities, and Their Application to Life Contingencies and Insurance Offices. Longman et al, London (1838)Google Scholar
- 16.Estoup, J.B.: Institut Stenographique de France (1916)Google Scholar
- 17.Condon, E.U.: Science
**67**, 300 (1928)CrossRefGoogle Scholar - 18.Zipf, G.K.: The Psychobiology of Language. Houghton-Mifflin, New York (1935)Google Scholar
- 19.Ferrer-i Cancho, R., Elvevag, B.: PLoS ONE
**5**(3), e9411 (2010)Google Scholar - 20.Simon, H.A.: Biometrika
**42**, 425 (1955); B. Mandelbrot, Information and Control**2**, 90 (1959); H.A. Simon, Information and Control**3**, 80 (1960); B. Mandelbrot, Information and Control**4**, 198 (1961); H.A. Simon, Information and Control**4**, 217 (1961); B. Mandelbrot, Information and Control**4**, 300 (1961); H.A. Simon. Information and Control**4**, 305 (1961)Google Scholar - 21.Zanette, D., Montemurro, M.: J. Quant. Ling.
**12**, 29 (2005)CrossRefGoogle Scholar - 22.Simkin, M.V., Roychowdhury, V.P.: Phys. Rep.
**502**, 1 (2011)Google Scholar - 23.Heaps, H.S.: Information Retrieval-Computational and Theoretical Aspects (Academic Press, Cambridge 1978)Google Scholar
- 24.Barabási, A.L., Albert, R.: Science
**286**, 509 (1999)CrossRefGoogle Scholar - 25.Dorogovtsev, S.N., Mendes, J.F.F.: Phys. Rev. E
**62**, 1842 (2000)CrossRefGoogle Scholar - 26.Cattuto, C., Loreto, V., Pietronero, L.: Proc. Natl. Acad. Sci.
**104**, 1461 (2007)CrossRefGoogle Scholar - 27.Cattuto, C., Loreto, V., Servedio, V.D.P.: Eur. Phys. Lett.
**76**, 208 (2006)CrossRefGoogle Scholar - 28.Corominas-Murtra, B., Hanel, R., Thurner, S.: Proc. Natl. Acad. Sci.
**112**(17), 5348 (2015)CrossRefGoogle Scholar - 29.Hoppe, F.M.: J. Math. Biol.
**20**(1), 91 (1984)CrossRefGoogle Scholar - 30.Pólya, G.: Annales de l’I.H.P.
**1**(2), 117 (1930)Google Scholar - 31.Johnson, N.L., Kotz, S.: Urn Models and Their Application: An Approach to Modern Discrete Probability Theory (Wiley, New York 1977)Google Scholar
- 32.Mahmoud, H.: Pólya Urn Models. Texts in Statistical Science Series. Taylor and Francis Ltd, Hoboken (2008)Google Scholar
- 33.Ewens, W.: Theor. Popul. Biol.
**3**, 87 (1972)CrossRefGoogle Scholar - 34.Fisher, R.A.: The Genetical Theory of Natural Selection. Clarendon Press, Oxford (1930)CrossRefGoogle Scholar
- 35.Wright, S.: Genetics
**16**(2), 97 (1931)Google Scholar - 36.Yule, U.G.: Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character
**213**, 21 (1925)Google Scholar - 37.Mitzenmacher, M.: Internet Math.
**1**, 226 (2003)CrossRefGoogle Scholar - 38.Newman, M.E.J.: Contemp. Phys.
**46**, 323 (2005)CrossRefGoogle Scholar - 39.Hoppe, F.M.: J, Math. Biol.
**25**(2), 123 (1987)CrossRefGoogle Scholar - 40.Kotz, S., Balakrishnan, N.: Advances in combinatorial methods and applications to probability and statistics. In: Balakrishnan, N. (ed.) Statistics for Industry and Technology, pp. 203–257. Birkäuser, Boston (1996)Google Scholar
- 41.Alexander, J.M., Skyrms, B., Zabell, S.: Dyn. Games Appl.
**2**(1), 129 (2012)CrossRefGoogle Scholar - 42.Zipf, G.K.: Human Behavior and the Principle of Least Effort. Addison-Wesley, Reading (1949)Google Scholar
- 43.Serrano, M.A., Flammini, A., Menczer, F.: PLoS ONE
**4**(4), e5372 (2009)CrossRefGoogle Scholar - 44.Lü, L., Zhang, Z.K., Zhou, T.: PLoS ONE
**5**(12), e14139 (2010)CrossRefGoogle Scholar - 45.Gerlach, M., Altmann, E.G.: Phys. Rev. X
**3**, 021006 (2013)Google Scholar