Constructing SAT Filters with a Quantum Annealer

Open Access
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9340)

Abstract

SAT filters are a novel and compact data structure that can be used to quickly query a word for membership in a fixed set. They have the potential to store more information in a fixed storage limit than a Bloom filter. Constructing a SAT filter requires sampling diverse solutions to randomly constructed constraint satisfaction instances, but there is flexibility in the choice of constraint satisfaction problem. Presented here is a case study of SAT filter construction with a focus on constraint satisfaction problems based on MAX-CUT clauses (Not-all-equal 3-SAT, 2-in-4-SAT, etc.) and frustrated cycles in the Ising model. Solutions are sampled using a D-Wave quantum annealer, and results are measured against classical approaches. The SAT variants studied are of interest in the context of SAT filters, independent of the solvers used.

Keywords

SAT filter Quantum annealing Ising model Maximum cut Sampling Constraint satisfaction problem 

References

  1. 1.
    Albash, T., Vinci, W., Mishra, A., Warburton, P.A., Lidar, D.A.: Consistency tests of classical and quantum models for a quantum annealer. Physical Review A 91(4), 042314 (2015)CrossRefGoogle Scholar
  2. 2.
    Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13(7), 422–426 (1970)CrossRefMATHGoogle Scholar
  3. 3.
    Boixo, S., Smelyanskiy, V.N., Shabani, A., Isakov, S.V., Dykman, M., Denchev, V.S., Amin, M., Smirnov, A., Mohseni, M., Neven, H.: Computational role of collective tunneling in a quantum annealer. arXiv preprint arXiv:1411.4036 (2014)
  4. 4.
    Bunyk, P., Hoskinson, E., Johnson, M., Tolkacheva, E., Altomare, F., Berkley, A., Harris, R., Hilton, J., Lanting, T., Przybysz, A., et al.: Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Transactions on Applied Superconductivity (2014)Google Scholar
  5. 5.
    Cai, J., Macready, W., Roy, A.: A practical heuristic for finding graph minors. arXiv preprint arXiv:1406.2741 (2014)
  6. 6.
    Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable and nearly uniform generator of SAT witnesses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 608–623. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Information Processing 7(5), 193–209 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Crawford, J.M., Auton, L.D.: Experimental results on the crossover point in random 3-SAT. Artificial Intelligence 81(1), 31–57 (1996)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dickson, N., et al.: Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications 4, May 1903, January 2013. http://www.ncbi.nlm.nih.gov/pubmed/23695697
  10. 10.
    Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer (2012)Google Scholar
  11. 11.
    Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: practically better than Bloom. In: Proceedings of the 10th ACM International on Conference on Emerging Networking Experiments and Technologies, pp. 75–88. ACM (2014)Google Scholar
  12. 12.
    Gableske, O.: Dimetheus. In: SAT Competition 2014: Solver and Benchmark Descriptions, pp. 29–30 (2014)Google Scholar
  13. 13.
    Gableske, O.: An Ising model inspired extension of the product-based MP framework for SAT. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 367–383. Springer, Heidelberg (2014) Google Scholar
  14. 14.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman (1979)Google Scholar
  15. 15.
    Hen, I., Albash, T., Job, J., Rønnow, T.F., Troyer, M., Lidar, D.: Probing for quantum speedup in spin glass problems with planted solutions (2015). arXiv preprint arXiv:1502.01663v2
  16. 16.
    Jerrum, M., Valiant, L., Vazirani, V.: Random generation of combinatorial structures from a uniform distribution. Theoretical Computer Science 43, 169–188 (1986)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Jiménez, A., Kiwi, M.: Computational hardness of enumerating groundstates of the antiferromagnetic Ising model in triangulations. Discrete Applied Mathematics (2014)Google Scholar
  18. 18.
    Johnson, M., Amin, M., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A., Johansson, J., Bunyk, P., et al.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011)CrossRefGoogle Scholar
  19. 19.
    King, A.D.: Performance of a quantum annealer on range-limited constraint satisfaction problems (2015). arXiv preprint arXiv:1502.02098v1
  20. 20.
    King, A.D., McGeoch, C.C.: Algorithm engineering for a quantum annealing platform. arXiv preprint arXiv:1410.2628 (2014)
  21. 21.
    Krimer, E., Erez, M.: The power of \(1+\alpha \) for memory-efficient Bloom filters. Internet Mathematics 7(1), 28–44 (2011)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Krzakala, F., Zdeborová, L.: Phase transitions and computational difficulty in random constraint satisfaction problems. In: Journal of Physics: Conference Series, vol. 95, p. 012012. IOP Publishing (2008)Google Scholar
  23. 23.
    Lovász, L.: Coverings and colorings of hypergraphs. In: Proc. 4th Southeastern Conference on Combinatorics, Graph Theory, and Computing, pp. 3–12. Utilitas Mathematica Publishing, Winnipeg (1973)Google Scholar
  24. 24.
    Lovett, S., Porat, E.: A lower bound for dynamic approximate membership data structures. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 797–804. IEEE (2010)Google Scholar
  25. 25.
    Lucas, A.: Ising formulations of many NP problems. Frontiers in Physics 2(5) (2014)Google Scholar
  26. 26.
    Mézard, M., Montanari, A.: Reconstruction on trees and spin glass transition. Journal of Statistical Physics 124(6), 1317–1350 (2006)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford University Press (2009)Google Scholar
  28. 28.
    Pagh, A., Pagh, R., Rao, S.S.: An optimal Bloom filter replacement. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 823–829. Society for Industrial and Applied Mathematics (2005)Google Scholar
  29. 29.
    Porat, E.: An optimal Bloom filter replacement based on matrix solving. In: Frid, A., Morozov, A., Rybalchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS, vol. 5675, pp. 263–273. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  30. 30.
    Putze, F., Sanders, P., Singler, J.: Cache-, hash- and space-efficient Bloom filters. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 108–121. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  31. 31.
    Rønnow, T., Wang, Z., Job, J., Boixo, S., Isakov, S., Wecker, D., Martinis, J., Lidar, D., Troyer, M.: Defining and detecting quantum speedup. Science 345(6195), 420–424 (2014)CrossRefGoogle Scholar
  32. 32.
    Selby, A.: Efficient subgraph-based sampling of Ising-type models with frustration. arXiv preprint arXiv:1409.3934v1 (2014)
  33. 33.
    Selman, B., Kautz, H., Cohen, B., et al.: Local search strategies for satisfiability testing. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge 26, 521–532 (1993)CrossRefMATHGoogle Scholar
  34. 34.
    Thurley, M.: sharpSAT – counting models with advanced component caching and implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 424–429. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  35. 35.
    Venturelli, D., Mandrà, S., Knysh, S., O’Gorman, B., Biswas, R., Smelyanskiy, V.: Quantum optimization of fully-connected spin glasses. arXiv preprint arXiv:1406.7553 (2014)
  36. 36.
    Walker, A.: Filters. Undergraduate thesis, Haverford College, Haverford, PA (2007)Google Scholar
  37. 37.
    Weaver, S.A., Ray, K.J., Marek, V.W., Mayer, A.J., Walker, A.K.: Satisfiability-based set membership filters. Journal on Satisfiability, Boolean Modeling and Computation 8, 129–148 (2014)MathSciNetMATHGoogle Scholar
  38. 38.
    Zdeborová, L., Mézard, M.: Locked constraint satisfaction problems. Physical Review Letters 101(7), 078702 (2008)CrossRefGoogle Scholar

Copyright information

© D-Wave Systems Inc. 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.D-Wave Systems Inc.BurnabyCanada

Personalised recommendations