Advertisement

Mining Backbone Literals in Incremental SAT

A New Kind of Incremental Data
  • Alexander Ivrii
  • Vadim Ryvchin
  • Ofer StrichmanEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9340)

Abstract

In incremental SAT solving, information gained from previous similar instances has so far been limited to learned clauses that are still relevant, and heuristic information such as activity weights and scores. In most settings in which incremental satisfiability is applied, many of the instances along the sequence of formulas being solved are unsatisfiable. We show that in such cases, with a P-time analysis of the proof, we can compute a set of literals that are logically implied by the next instance. By adding those literals as assumptions, we accelerate the search.

Keywords

Model Check Bounded Model Check Empty Clause Resolution Graph Resolution Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O., Strichman, O.: Reducing the size of resolution proofs in linear time. STTT 13(3), 263–272 (2011)CrossRefGoogle Scholar
  3. 3.
    Belov, A., Marques-Silva, J.: MUSer2: An efficient MUS extractor. J. on Satisfiability, Boolean Modeling and Computation (JSAT) 8(1/2), 123–128 (2012)zbMATHGoogle Scholar
  4. 4.
    Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple. J. ACM 48(2), 149–169 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  6. 6.
    Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  7. 7.
    Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatisfiable core extraction. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 36–41. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  8. 8.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  9. 9.
    Janota, M., Lynce, I., Marques-Silva, J.: Algorithms for computing backbones of propositional formulae. AI Commun. 28(2), 161–177 (2015)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kroening, D., Strichman, O.: Decision procedures - an algorithmic point of view. Theoretical Computer Science. Springer-Verlag, February 2008 (to be published)Google Scholar
  11. 11.
    McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  12. 12.
    Nadel, A.: Understanding and Improving a Modern SAT Solver. PhD thesis, Tel Aviv University, Tel Aviv, Israel, August 2009Google Scholar
  13. 13.
    Nadel, A.: Boosting minimal unsatisfiable core extraction. In: Bloem, R., Sharygina, N. (eds.) FMCAD (2010)Google Scholar
  14. 14.
    Nadel, A., Ryvchin, V., Strichman, O.: Efficient MUS extraction with resolution. In: FMCAD, pp. 197–200. IEEE (2013)Google Scholar
  15. 15.
    Ryvchin, V., Strichman, O.: Faster extraction of high-level minimal unsatisfiable cores. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 174–187. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  16. 16.
    Shtrichman, O.: Sharing information between instances of a propositional satisfiability (SAT) problem, December 2000. US provisional patent (60/257,384). Later became patent US2002/0123867 A1Google Scholar
  17. 17.
    Shtrichman, O.: Pruning techniques for the SAT-based bounded model checking problem. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 58–70. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  18. 18.
    Whittemore, J., Kim, J., Sakallah, K.: Satire: a new incremental satisfiability engine. In: IEEE/ACM Design Automation Conference (DAC) (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alexander Ivrii
    • 1
  • Vadim Ryvchin
    • 2
  • Ofer Strichman
    • 3
    Email author
  1. 1.IBM Research LabHaifaIsrael
  2. 2.Design Technology SolutionsIntel Co.HaifaIsrael
  3. 3.Information Systems Engineering, IETechnionHaifaIsrael

Personalised recommendations