SATGraf: Visualizing the Evolution of SAT Formula Structure in Solvers

  • Zack Newsham
  • William Lindsay
  • Vijay Ganesh
  • Jia Hui Liang
  • Sebastian Fischmeister
  • Krzysztof Czarnecki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9340)


In this paper, we present SATGraf, a tool for visualizing the evolution of the structure of a Boolean SAT formula in real time as it is being processed by a conflict-driven clause-learning (CDCL) solver. The tool is parametric, allowing the user to define the structure to be visualized. In particular, the tool can visualize the community structure of real-world Boolean satisfiability (SAT) instances and their evolution during solving. Such visualizations have been the inspiration for several hypotheses about the connection between community structure and the running time of CDCL SAT solvers, some which we have already empirically verified. SATGraf has enabled us in making the following empirical observations regarding CDCL solvers: First, we observe that the Variable State Independent Decaying Sum (VSIDS) branching heuristic consistently chooses variables with a high number of inter-community edges, i.e., high-centrality bridge variables. Second, we observe that the VSIDS branching heuristic and hence the CDCL search procedure is highly focused, i.e., VSIDS disproportionately picks variables from a few communities in the community-structure of input SAT formulas.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clarke, E., Talupur, M., Veith, H., Wang, D.: SAT based predicate abstraction for hardware verification. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 78–92. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  2. 2.
    Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using sat procedures instead of bdds. In: Proceedings of the 36th Annual ACM/IEEE Design Automation Conference, pp. 317–320. ACM (1999)Google Scholar
  3. 3.
    Newsham, Z., Ganesh, V., Fischmeister, S., Audemard, G., Simon, L.: Impact of community structure on SAT solver performance. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 252–268. Springer, Heidelberg (2014) Google Scholar
  4. 4.
    Ansótegui, C., Giráldez-Cru, J., Levy, J.: The community structure of SAT formulas. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 410–423. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  5. 5.
    Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Physical Review E 70(6), 066111 (2004)CrossRefGoogle Scholar
  6. 6.
    Zhang, W., Pan, G., Wu, Z., Li, S.: Online community detection for large complex networks. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 1903–1909. AAAI Press (2013)Google Scholar
  7. 7.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks (2003). (last viewed December 2013)
  8. 8.
    Kamada, T., Kawai, S.: A general framework for visualizing abstract objects and relations. ACM Trans. Graph. 10(1), 1–39 (1991)CrossRefGoogle Scholar
  9. 9.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Software: Practice and Experience 21(11), 1129–1164 (1991)Google Scholar
  10. 10.
    SAT competition 2013 (2013). (last viewed January 2014)
  11. 11.
    Newsham, Z., Lindsay, W., Liang, J., Ganesh, V., Fischmeister, S., Czarnecki, K.: Satgraf sat formula visualization tool.
  12. 12.
    Newsham, Z., Lindsay, W., Liang, J., Ganesh, V., Fischmeister, S., Czarnecki, K.: Satgraf structure source.
  13. 13.
    Newsham, Z., Lindsay, W., Liang, J., Ganesh, V., Fischmeister, S., Czarnecki, K.: Satgraf visualisation executable.
  14. 14.
    Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain analysis (FODA) feasibility study. Technical report, DTIC Document (1990)Google Scholar
  15. 15.
    Newsham, Z., Lindsay, W., Liang, J., Ganesh, V., Fischmeister, S., Czarnecki, K.: Satgraf: Results (2014). (last viewed January 2015)
  16. 16.
    Taiwan, T., Wang, H.: Minipure (2013). (last viewed January 2014)
  17. 17.
    Een, N., Sörensson, N.: Minisat: a SAT solver with conflict-clause minimization. In: SAT 2005 (2005)Google Scholar
  18. 18.
    Sinz, C., Dieringer, E.-M.: DPvis – a tool to visualize the structure of SAT instances. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 257–268. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  19. 19.
    Nicolini, C., Dallachiesa, M.: Graphinsight: An interactive visualization system for graph data exploration.
  20. 20.
    Orbe, E., Areces, C., Infante-López, G.: iSat: structure visualization for SAT problems. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 335–342. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  21. 21.
    Bilgin, A., Ellson, J., Gansner, E., Smyrna, O., Hu, Y., North, S.: Graphviz - graph visualization software.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Zack Newsham
    • 1
  • William Lindsay
    • 1
  • Vijay Ganesh
    • 1
  • Jia Hui Liang
    • 1
  • Sebastian Fischmeister
    • 1
  • Krzysztof Czarnecki
    • 1
  1. 1.University of WaterlooWaterlooCanada

Personalised recommendations