A New Approach to Partial MUS Enumeration

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9340)


Searching for minimal explanations of infeasibility in constraint sets is a problem known for many years. Recent developments closed a gap between approaches that enumerate all minimal unsatisfiable subsets (MUSes) of an unsatisfiable formula in the Boolean domain and approaches that extract only one single MUS. These new algorithms are described as partial MUS enumerators. They offer a viable option when complete enumeration is not possible within a certain time limit.

This paper develops a novel method to identify clauses that are identical regarding their presence or absence in MUSes. With this concept we improve the performance of some of the state-of-the-art partial MUS enumerators using its already established framework. In our approach we focus mainly on determining minimal correction sets much faster to improve the MUS finding subsequently. An extensive practical analysis shows the increased performance of our extensions.


Model Check Conjunctive Normal Form Block Property Bound Model Check Conjunctive Normal Form Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bacchus, F., Davies, J., Tsimpoukelli, M., Katsirelos, G.: Relaxation search: a simple way of managing optional clauses. In: AAAI 2014, pp. 835–841 (2014)Google Scholar
  2. 2.
    Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  3. 3.
    Bakker, R.R., Dikker, F., Tempelman, F., Wognum, P.: Diagnosing and solving over-determined constraint satisfaction problems. In: IJCAI 1993, pp. 276–281 (1993)Google Scholar
  4. 4.
    Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Commun. 2, 97–116 (2012)MathSciNetMATHGoogle Scholar
  5. 5.
    Belov, A., Marques-Silva, J.: MUSer2: an efficient MUS extractor. In: JSAT 2012, pp. 123–128 (2012)Google Scholar
  6. 6.
    Belov, A., Marques-Silva, J.: Accelerating MUS extraction with recursive model rotation. In: FMCAD 2011, pp. 37–40 (2011)Google Scholar
  7. 7.
    Birnbaum, E., Lozinskii, E.L.: Consistent subsets of inconsistent systems: structure and behaviour. J. Exp. Theor. Artif. Intell. 15(1), 25–46 (2003)CrossRefMATHGoogle Scholar
  8. 8.
    Chinneck, J.W., Dravnieks, E.W.: Locating Minimal Infeasible Constraint Sets in Linear Programs. INFORMS Journal on Computing 3(2), 157–168 (1991)CrossRefMATHGoogle Scholar
  9. 9.
    Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  10. 10.
    De Kleer, J., Williams, B.C.: Diagnosing multiple faults. AI 32(1), 97–130 (1987)MATHGoogle Scholar
  11. 11.
    Desrosiers, C., Galinier, P., Hertz, A., Paroz, S.: Using heuristics to find minimal unsatisfiable subformulas in satisfiability problems. J. Comb. Optim. 18(2), 124–150 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  13. 13.
    Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  14. 14.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness (1979)Google Scholar
  15. 15.
    Gomes, C.P., Sabharwal, A., Selman, B.: Model counting. In: Handbook of SAT 2009, pp. 633–654 (2009)Google Scholar
  16. 16.
    Greenberg, H.J., Murphy, F.H.: Approaches to Diagnosing Infeasible Linear Programs. INFORMS Journal on Computing 3(3), 253–261 (1991)CrossRefMATHGoogle Scholar
  17. 17.
    Han, B., Lee, S.J.: Deriving minimal conflict sets by CS-trees with mark set in diagnosis from first principles. IEEE Transactions on Systems, Man, and Cybernetics, 281–286 (1999)Google Scholar
  18. 18.
    Hou, A.: A Theory of Measurement in Diagnosis from First Principles. AI 65(2), 281–328 (1994)MathSciNetMATHGoogle Scholar
  19. 19.
    Kavvadias, D.J., Stavropoulos, E.C.: An efficient algorithm for the transversal hypergraph generation. Journal of Graph Algorithms and Applications 9, 239–264 (2005)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Liffiton, M.H., Malik, A.: Enumerating infeasibility: finding multiple MUSes quickly. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 160–175. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  21. 21.
    Liffiton, M.H., Sakallah, K.A.: Algorithms for Computing Minimal Unsatisfiable Subsets of Constraints. J. Autom. Reasoning 40(1), 1–33 (2008)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Liffiton, M.H., Sakallah, K.A.: Generalizing core-guided Max-SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 481–494. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  23. 23.
    van Loon, J.: Irreducibly inconsistent systems of linear inequalities. EJOR 8(3), 283–288 (1981)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing minimal correction subsets. In: IJCAI 2013 (2013)Google Scholar
  25. 25.
    Nadel, A., Ryvchin, V., Strichman, O.: Accelerated Deletion-based Extraction of Minimal Unsatisfiable Cores. JSAT 9, 27–51 (2014)MathSciNetGoogle Scholar
  26. 26.
    Previti, A., Marques-Silva, J.: Partial MUS enumeration. In: AAAI 2013, pp. 818–825 (2013)Google Scholar
  27. 27.
    Reiter, R.: A Theory of Diagnosis from First Principles. Artificial Intelligence 32(1), 57–95 (1987)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Silva, J.P.M.: Minimal Unsatisfiability: models, algorithms and applications (invited paper). In: ISMVL 2010, pp. 9–14 (2010)Google Scholar
  29. 29.
    de Siqueira N., J.L., Puget, J.F.: Explanation-based generalisation of failures. In: ECAI 1988, pp. 339–344 (1988)Google Scholar
  30. 30.
    Torlak, E., Chang, F.S.-H., Jackson, D.: Finding minimal unsatisfiable cores of declarative specifications. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 326–341. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  31. 31.
    Velev, M.N.: Using rewriting rules and positive equality to formally verify wide-issue out-of-order microprocessors with a reorder buffer. In: DATE 2002, pp. 28–35 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Wilhelm-Schickard Institute of Computer ScienceUniversity of TübingenTübingenGermany

Personalised recommendations