SMT-RAT: An Open Source C++ Toolbox for Strategic and Parallel SMT Solving

  • Florian Corzilius
  • Gereon Kremer
  • Sebastian Junges
  • Stefan Schupp
  • Erika Ábrahám
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9340)

Abstract

During the last decade, popular SMT solvers have been extended step-by-step with a wide range of decision procedures for different theories. Some SMT solvers also support the user-defined tuning and combination of such procedures, typically via command-line options. However, configuring solvers this way is a tedious task with restricted options.

In this paper we present our modular and extensible C++ library SMT-RAT, which offers numerous parameterized procedure modules for different logics. These modules can be configured and combined into an SMT solver using a comprehensible whilst powerful strategy, which can be specified via a graphical user interface. This makes it easier to construct a solver which is tuned for a specific set of problem instances. Compared to a previous version, we have extended our library with a number of new modules and support for parallelization in strategies. An additional contribution is our thread-safe and generic C++ library CArL, offering efficient data structures and basic operations for real arithmetic, which can be used for the fast implementation of new theory-solving procedures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, J., Bigatti, A.M.: CoCoALib: a C++ library for computations in commutative algebra.. and beyond. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 73–76. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  2. 2.
    Akbarpour, B., Paulson, L.C.: Metitarski: An automatic theorem prover for real-valued special functions. Journal of Automated Reasoning 44(3), 175–205 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  4. 4.
    Basu, S., Pollack, R., Roy, M.: Algorithms in Real Algebraic Geometry. Springer (2010)Google Scholar
  5. 5.
    Bauer, C., Frink, A., Kreckel, R.: Introduction to the GiNaC framework for symbolic computation within the C++ programming language. Journal of Symbolic Computation 33(1), 1–12 (2002)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The openSMT solver. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  7. 7.
    Chauhan, P., Goyal, D., Hasteer, G., Mathur, A., Sharma, N.: Non-cycle-accurate sequential equivalence checking. In: Proc. of DAC 2009, pp. 460–465. ACM Press (2009)Google Scholar
  8. 8.
    Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  9. 9.
    Codish, M., Fekete, Y., Fuhs, C., Giesl, J., Waldmann, J.: Exotic semi-ring constraints. In: Proc. of SMT 2012. EPiC Series, vol. 20, pp. 88–97. EasyChair (2013)Google Scholar
  10. 10.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: Brakhage, H. (ed.) Automata Theory and Formal Languages. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975) Google Scholar
  11. 11.
    Corzilius, F., Ábrahám, E.: Virtual substitution for SMT-solving. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 360–371. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  12. 12.
    Corzilius, F., Loup, U., Junges, S., Ábrahám, E.: SMT-RAT: an SMT-compliant nonlinear real arithmetic toolbox. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 442–448. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  13. 13.
    Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen, J.P., Ábrahám, E.: PROPhESY: a PRObabilistic ParamEter SYthesis tool. In: Proc. of CAV 2015. LNCS, vol. 9207. Springer (2015)Google Scholar
  14. 14.
    Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulas over ordered fields. Journal of Symbolic Computation 24, 209–231 (1995)CrossRefMATHGoogle Scholar
  15. 15.
    Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  16. 16.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  17. 17.
    Fränzle, M., et al.: Efficient solving of large non-linear arithmetic constraint systems with complex Boolean structure. Journal on Satisfiability, Boolean Modeling and Computation 1(3–4), 209–236 (2007)MATHGoogle Scholar
  18. 18.
    Gao, S., Ganai, M.K., Ivancic, F., Gupta, A., Sankaranarayanan, S., Clarke, E.M.: Integrating ICP and LRA solvers for deciding nonlinear real arithmetic problems. In: Proc. of FMCAD 2010, pp. 81–89. IEEE (2010)Google Scholar
  19. 19.
    Giesl, J., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Otto, C., Plücker, M., Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann, R.: Proving termination of programs automatically with \(\sf AProVE\). In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 184–191. Springer, Heidelberg (2014) Google Scholar
  20. 20.
    Granlund, T.: the GMP development team: GNU MP: The GNU Multiple Precision Arithmetic Library. http://gmplib.org
  21. 21.
    Haible, B., Kreckel, R.B.: CLN: Class Library for Numbers. http://www.ginac.de/CLN
  22. 22.
    Heintz, J., Roy, M.F., Solerno, P.: On the theoretical and practical complexity of the existential theory of reals. The Computer Journal 36(5), 427–431 (1993)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Hong, H.: Comparison of several decision algorithms for the existential theory of the reals. Tech. Rep. 91–41, Research Institute for Symbolic Computation, Johannes Kepler University Linz (1991)Google Scholar
  24. 24.
    Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  25. 25.
    Junges, S., Loup, U., Corzilius, F., Ábrahám, E.: On Gröbner bases in the context of satisfiability-modulo-theories solving over the real numbers. In: Muntean, T., Poulakis, D., Rolland, R. (eds.) CAI 2013. LNCS, vol. 8080, pp. 186–198. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  26. 26.
    Kremer, G., Corzilius, F., Junges, S., Schupp, S., Ábrahám, E.: CArL: Computer ARithmetic and Logic Library. https://github.com/smtrat/carl
  27. 27.
    Loup, U., Scheibler, K., Corzilius, F., Ábrahám, E., Becker, B.: A symbiosis of interval constraint propagation and cylindrical algebraic decomposition. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 193–207. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  28. 28.
    de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  29. 29.
    de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS, vol. 7788, pp. 15–44. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  30. 30.
    Platzer, A., Quesel, J.-D., Rümmer, P.: Real world verification. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 485–501. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  31. 31.
    Ravanbakhsh, H., Sankaranarayanan, S.: Counterexample guided synthesis of switched controllers for reach-while-stay properties. CoRR abs/1505.01180 (2015). http://arxiv.org/abs/1505.01180
  32. 32.
    Scheibler, K., Kupferschmid, S., Becker, B.: Recent improvements in the SMT solver iSAT. In: Proc. of MBMV 2013, pp. 231–241. Institut für Angewandte Mikroelektronik und Datentechnik, Fakultät für Informatik und Elektrotechnik, Universität Rostock (2013)Google Scholar
  33. 33.
    Sebastiani, R.: Lazy satisfiability modulo theories. Journal on Satisfiability, Boolean Modeling and Computation 3, 141–224 (2007)MathSciNetMATHGoogle Scholar
  34. 34.
  35. 35.
    Weispfenning, V.: A new approach to quantifier elimination for real algebra. In: Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation, pp. 376–392. Springer (1998)Google Scholar
  36. 36.
    Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic Computation 5(1–2), 3–27 (1988)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Zankl, H., Middeldorp, A.: Satisfiability of non-linear (ir)rational arithmetic. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 481–500. Springer, Heidelberg (2010) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Florian Corzilius
    • 1
  • Gereon Kremer
    • 1
  • Sebastian Junges
    • 1
  • Stefan Schupp
    • 1
  • Erika Ábrahám
    • 1
  1. 1.RWTH Aachen UniversityAachenGermany

Personalised recommendations