Exploiting Resolution-Based Representations for MaxSAT Solving

  • Miguel Neves
  • Ruben Martins
  • Mikoláš Janota
  • Inês Lynce
  • Vasco Manquinho
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9340)

Abstract

Most recent MaxSAT algorithms rely on a succession of calls to a SAT solver in order to find an optimal solution. In particular, several algorithms take advantage of the ability of SAT solvers to identify unsatisfiable subformulas. Usually, these MaxSAT algorithms perform better when small unsatisfiable subformulas are found in early iterations of the algorithm. However, this is not the case in many problem instances, since the whole formula is given to the SAT solver in each call.

In this paper, we propose to partition the MaxSAT formula using a resolution-based graph representation. Partitions are then iteratively joined by using a proximity measure extracted from the graph representation of the formula. The algorithm ends when only one partition remains and the optimal solution is found. Experimental results show that this new approach further enhances a state of the art MaxSAT solver to optimally solve a larger set of industrial problem instances.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ansótegui, C., Giráldez-Cru, J., Levy, J.: The Community structure of SAT formulas. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 410–423. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  2. 2.
    Asín, R., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT and MaxSAT. Annals of Operations Research 218(1), 71–91 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  4. 4.
    Blondel, V., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics 2008(10), P10008 (2008)CrossRefGoogle Scholar
  5. 5.
    Brandes, U., Delling, D., Gaertler, M., Goerke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: Maximizing modularity is hard (2006). arXiv: physics/0608255
  6. 6.
    Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  7. 7.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99(12), 7821–7826 (2002)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms for maximum satisfiability. In: AAAI Conference on Artificial Intelligence. AAAI Press (2011)Google Scholar
  9. 9.
    Ignatiev, A., Morgado, A., Manquinho, V., Lynce, I., Marques-Silva, J.: Progression in maximum satisfiability. In: European Conference on Artificial Intelligence, pp. 453–458. IOS Press (2014)Google Scholar
  10. 10.
    Janota, M., Lynce, I., Manquinho, V., Marques-Silva, J.: PackUp: Tools for Package Upgradability Solving. Journal on Satisfiability, Boolean Modeling and Computation 8(1/2), 89–94 (2012)MathSciNetMATHGoogle Scholar
  11. 11.
    Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  12. 12.
    Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiability. In: Programming Language Design and Implementation, pp. 437–446. ACM (2011)Google Scholar
  13. 13.
    Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: A Partial Max-SAT Solver. Journal on Satisfiability, Boolean Modeling and Computation 8(1/2), 95–100 (2012)MathSciNetMATHGoogle Scholar
  14. 14.
    Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics 96–97, 149–176 (1999)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Le Berre, D., Rapicault, P.: Dependency management for the eclipse ecosystem: an update. In: International Workshop on Logic and SearchGoogle Scholar
  16. 16.
    Marques-Silva, J., Planes, J.: On Using Unsatisfiability for Solving Maximum Satisfiability (2007). CoRRGoogle Scholar
  17. 17.
    Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality constraints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–548. Springer, Heidelberg (2014) Google Scholar
  18. 18.
    Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver\(^\text{, }\). In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer, Heidelberg (2014) Google Scholar
  19. 19.
    Martins, R., Manquinho, V., Lynce, I.: Community-based partitioning for MaxSAT solving. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 182–191. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  20. 20.
    Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: A survey and assessment. Constraints 18(4), 478–534 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Morgado, A., Heras, F., Marques-Silva, J.: Improvements to core-guided binary search for MaxSAT. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 284–297. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  22. 22.
    Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: AAAI Conference on Artificial Intelligence, pp. 2717–2723. AAAI Press (2014)Google Scholar
  23. 23.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69(026113) (2004)Google Scholar
  24. 24.
    Safarpour, S., Mangassarian, H., Veneris, A.G., Liffiton, M.H., Sakallah, K.A.: Improved design debugging using maximum satisfiability. In: Formal Methods in Computer-Aided Design, pp. 13–19. IEEE Computer Society (2007)Google Scholar
  25. 25.
    Van Gelder, A.: Variable independence and resolution paths for quantified boolean formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  26. 26.
    Yates, R.A., Raphael, B., Hart, T.P.: Resolution graphs. Artificial Intelligence 1(4), 257–289 (1970)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Miguel Neves
    • 1
  • Ruben Martins
    • 2
    • 3
  • Mikoláš Janota
    • 1
  • Inês Lynce
    • 1
  • Vasco Manquinho
    • 1
  1. 1.INESC-ID / Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.University of Texas at AustinAustinUSA
  3. 3.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations