Advertisement

Incrementally Computing Minimal Unsatisfiable Cores of QBFs via a Clause Group Solver API

  • Florian LonsingEmail author
  • Uwe Egly
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9340)

Abstract

We consider the incremental computation of minimal unsatisfiable cores (MUCs) of QBFs. To this end, we equipped our incremental QBF solver DepQBF with a novel API to allow for incremental solving based on clause groups. A clause group is a set of clauses which is incrementally added to or removed from a previously solved QBF. Our implementation of the novel API is related to incremental SAT solving based on selector variables and assumptions. However, the API entirely hides selector variables and assumptions from the user, which facilitates the integration of DepQBF in other tools. We present implementation details and, for the first time, report on experiments related to the computation of MUCs of QBFs using DepQBF’s novel clause group API.

Keywords

Boolean Formula Selector Variable Unit Clause Bound Model Check Conformant Planning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Efficient generation of unsatisfiability proofs and cores in SAT. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 16–30. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  2. 2.
    Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  3. 3.
    Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Commun. 25(2), 97–116 (2012)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Benedetti, M., Mangassarian, H.: QBF-based formal verification: experience and perspectives. JSAT 5, 133–191 (2008)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  6. 6.
    Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate quantified boolean formulae and its experimental evaluation. J. Autom. Reasoning 28(2), 101–142 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cimatti, A., Griggio, A., Sebastiani, R.: A simple and flexible way of computing small unsatisfiable cores in SAT modulo theories. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 334–339. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  8. 8.
    Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatisfiable core extraction. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 36–41. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  9. 9.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  10. 10.
    Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr. Notes Theor. Comput. Sci. 89(4), 543–560 (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Egly, U., Kronegger, M., Lonsing, F., Pfandler, A.: Conformant planning as a case study of incremental QBF solving. In: Aranda-Corral, G.A., Calmet, J., Martín-Mateos, F.J. (eds.) AISC 2014. LNCS, vol. 8884, pp. 120–131. Springer, Heidelberg (2014) Google Scholar
  12. 12.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/Term resolution and learning in the evaluation of quantified boolean formulas. J. Artif. Intell. Res. (JAIR) 26, 371–416 (2006)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Grégoire, É., Mazure, B., Piette, C.: On Approaches to Explaining Infeasibility of Sets of Boolean Clauses. In: ICTAI, pp. 74–83. IEEE Computer Society (2008)Google Scholar
  14. 14.
    Ignatiev, A., Janota, M., Marques-Silva, J.: Quantified maximum satisfiability. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 250–266. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  15. 15.
    Jussila, T., Biere, A.: Compressing BMC encodings with QBF. ENTCS 174(3), 45–56 (2007)zbMATHGoogle Scholar
  16. 16.
    Kleine Büning, H., Zhao, X.: Minimal false quantified boolean formulas. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 339–352. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  17. 17.
    Lagniez, J.-M., Biere, A.: Factoring out assumptions to speed Up MUS extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 276–292. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  18. 18.
    Letz, R.: Lemma and model caching in decision procedures for quantified boolean formulas. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, p. 160. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  19. 19.
    Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lonsing, F., Egly, U.: Incremental QBF solving. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 514–530. Springer, Heidelberg (2014) Google Scholar
  21. 21.
    Lonsing, F., Egly, U.: Incremental QBF solving by DepQBF. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 307–314. Springer, Heidelberg (2014) Google Scholar
  22. 22.
    Lonsing, F., Egly, U.: Incrementally Computing Minimal Unsatisfiable Cores of QBFs via a Clause Group Solver API. CoRR abs/1502.02484 (2015). http://arxiv.org/abs/1502.02484, SAT 2015 proceedings version (6-page tool paper) with appendix
  23. 23.
    Marin, P., Miller, C., Lewis, M.D.T., Becker, B.: Verification of Partial Designs using Incremental QBF Solving. In: Rosenstiel, W., Thiele, L. (eds.) DATE, pp. 623–628. IEEE (2012)Google Scholar
  24. 24.
    Marques-Silva, J.: Minimal unsatisfiability: models, algorithms and applications (Invited Paper). In: ISMVL, pp. 9–14. IEEE Computer Society (2010)Google Scholar
  25. 25.
    Marques-Silva, J., Lynce, I.: On improving MUS extraction algorithms. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 159–173. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  26. 26.
    Miller, C., Marin, P., Becker, B.: Verification of partial designs using incremental QBF. AI Commun. 28(2), 283–307 (2015)MathSciNetGoogle Scholar
  27. 27.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: DAC, pp. 530–535. ACM (2001)Google Scholar
  28. 28.
    Nadel, A.: Boosting Minimal Unsatisfiable Core Extraction. In: Bloem, R., Sharygina, N. (eds.) FMCAD, pp. 221–229. IEEE (2010)Google Scholar
  29. 29.
    Nadel, A., Ryvchin, V., Strichman, O.: Accelerated deletion-based extraction of minimal unsatisfiable cores. JSAT 9, 27–51 (2014)MathSciNetGoogle Scholar
  30. 30.
    Nadel, A., Ryvchin, V., Strichman, O.: Ultimately incremental SAT. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 206–218. Springer, Heidelberg (2014) Google Scholar
  31. 31.
    Yu, Y., Malik, S.: Validating the result of a Quantified Boolean Formula (QBF) solver: theory and practice. In: Tang, T. (ed.) ASP-DAC, pp. 1047–1051. ACM Press (2005)Google Scholar
  32. 32.
    Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts in quantified boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, p. 200. Springer, Heidelberg (2002) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Knowledge-Based Systems Group Vienna University of TechnologyViennaAustria

Personalised recommendations