Advertisement

On Enumerating Query Plans Using Analytic Tableau

  • Alexander HudekEmail author
  • David Toman
  • Grant Weddell
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9323)

Abstract

We consider how the method of analytic tableau coupled with interpolant extraction can be adapted to enumerate possible query plans for a given user query in the context of a first order theory that defines a relational database schema. In standard analytic tableau calculi, the sub-formula property of proofs limits the variety of interpolants and consequently of plans that can be generated for the given query. To overcome this limitation, we present a two-phase adaptation of a tableau calculus that ensures all plans logically equivalent to the query with respect to the schema, that correctly implement the user query, are indeed found. We also show how this separation allows us to avoid backtracking when reasoning about consequences of the schema.

Keywords

User Query Predicate Symbol Physical Design Query Optimization Query Plan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)Google Scholar
  2. 2.
    Aho, A.V., Beeri, C., Ullman, J.D.: The theory of joins in relational databases. ACM Trans. Database Syst. 4, 297–314 (1979)CrossRefGoogle Scholar
  3. 3.
    Benedikt, M., ten Cate, B., Tsamoura, E.: Generating low-cost plans from proofs. In: Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 200–211 (2014)Google Scholar
  4. 4.
    Beth, E.W.: On Padoa’s method in the theory of definition. Indagationes Mathematicae 15, 330–339 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Borgida, A., de Bruijn, J., Franconi, E., Seylan, I., Straccia, U., Toman, D., Weddell, G.E.: On finding query rewritings under expressive constraints. In: SEBD, pp. 426–437 (2010)Google Scholar
  6. 6.
    Chaudhuri, S.: An overview of query optimization in relational systems. In: PODS, pp. 34–43 (1998)Google Scholar
  7. 7.
    Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13, 377–387 (1970)CrossRefzbMATHGoogle Scholar
  8. 8.
    Craig, W.: Three uses of the Herbrand-Genzen theorem in relating model theory and proof theory. Journal of Symbolic Logic 22, 269–285 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Deutsch, A., Popa, L., Tannen, V.: Physical data independence, constraints, and optimization with universal plans. In: Proc. International Conference on Very Large Data Bases, VLDB 1999, pp. 459–470 (1999)Google Scholar
  10. 10.
    Ebbinghaus, H.-D., Flum, J.: Finite model theory, 2nd edn. Perspectives in Mathematical Logic. Springer (1999)Google Scholar
  11. 11.
    Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn. Graduate Texts in Computer Science. Springer (1996)Google Scholar
  12. 12.
    Gentzen, G.: Untersuchungen über das logische schließen. I. Mathematische Zeitschrift 39, 176–210 (1935), doi:10.1007/BF01201353MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ioannidis, Y.E.: Query optimization. ACM Comput. Surv. 28(1), 121–123 (1996)CrossRefGoogle Scholar
  14. 14.
    Lenzerini, M.: Data integration: A theoretical perspective. In: PODS, pp. 233–246 (2002)Google Scholar
  15. 15.
    Levy, A.Y., Mendelzon, A.O., Sagiv, Y., Srivastava, D.: Answering queries using views. In: PODS, pp. 95–104 (1995)Google Scholar
  16. 16.
    Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM Trans. Database Syst. 4, 455–469 (1979)CrossRefGoogle Scholar
  17. 17.
    Manthey, R., Bry, F.: A hyperresolution-based proof procedure and its implementation in prolog. In: GWAI, pp. 221–230 (1987)Google Scholar
  18. 18.
    Marx, M.: Queries determined by views: pack your views. In: PODS, pp. 23–30 (2007)Google Scholar
  19. 19.
    Robinson, N., McIlraith, S.A., Toman, D.: Cost-based query optimization via AI planning. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2344–2351 (2014)Google Scholar
  20. 20.
    Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access path selection in a relational database management system. In: Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data, pp. 23–34 (1979)Google Scholar
  21. 21.
    Seylan, I., Franconi, E., de Bruijn, J.: Effective query rewriting with ontologies over dboxes. In: IJCAI, pp. 923–925 (2009)Google Scholar
  22. 22.
    ten Cate, B., Franconi, E., Seylan, I.: Beth definability in expressive description logics. In: IJCAI, pp. 1099–1106 (2011)Google Scholar
  23. 23.
    Toman, D., Weddell, G.E.: Fundamentals of Physical Design and Query Compilation. Synthesis Lectures on Data Management. Morgan & Claypool Publishers (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations