International Conference on Automated Reasoning with Analytic Tableaux and Related Methods

Automated Reasoning with Analytic Tableaux and Related Methods pp 237-252 | Cite as

Proof-Search in Natural Deduction Calculus for Classical Propositional Logic

  • Mauro Ferrari
  • Camillo Fiorentini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9323)


We address the problem of proof-search in the natural deduction calculus for Classical propositional logic. Our aim is to improve the usual naïve proof-search procedure where introduction rules are applied upwards and elimination rules downwards. In particular, we introduce NCR, a variant of the usual natural deduction calculus for Classical propositional logic, and we show that it can be used as a base for a proof-search procedure which does not require backtracking nor loop-checking.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bolotov, A., Bocharov, V., Gorchakov, A., Shangin, V.: Automated first order natural deduction. In: Prasad, B. (ed.) IICAI, pp. 1292–1311. IICAI (2005)Google Scholar
  2. 2.
    D’Agostino, M.: Classical natural deduction. In: Artëmov, S.N., et al. (eds.) We Will Show Them!, pp. 429–468. College Publications (2005)Google Scholar
  3. 3.
    Dyckhoff, R., Pinto, L.: Cut-elimination and a permutation-free sequent calculus for intuitionistic logic. Studia Logica 60(1), 107–118 (1998)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ferrari, M., Fiorentini, C., Fiorino, G.: A terminating evaluation-driven variant of g3i. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS, vol. 8123, pp. 104–118. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Ferrari, M., Fiorentini, C., Fiorino, G.: An evaluation-driven decision procedure for G3i. ACM Transactions on Computational Logic (TOCL), 6(1), 8:1–8:37 (2015)Google Scholar
  6. 6.
    Gabbay, D.M., Olivetti, N.: Goal-Directed Proof Theory. Springer (2000)Google Scholar
  7. 7.
    Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and types. Camb. Univ. Press (1989)Google Scholar
  8. 8.
    Indrzejczak, A.: Natural Deduction, Hybrid Systems and Modal Logics. Trends in Logic, vol. 30. Springer (2010)Google Scholar
  9. 9.
    Jaśkowski, S.: On the rules of suppositions in formal logic. Studia Logica 1, 5–32 (1934)MATHGoogle Scholar
  10. 10.
    Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and classical logics. Theoretical Computer Science 410(46), 4747–4768 (2009)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Pastre, D.: Strong and weak points of the MUSCADET theorem prover - examples from CASC-JC. AI Commun. 15(2-3), 147–160 (2002)MATHGoogle Scholar
  12. 12.
    Pfenning, F.: Automated theorem proving. Lecture notes. CMU (2004)Google Scholar
  13. 13.
    Prawitz, D.: Natural Deduction. Almquist and Winksell (1965)Google Scholar
  14. 14.
    Sieg, W., Byrnes, J.: Normal natural deduction proofs (in classical logic). Studia Logica 60(1), 67–106 (1998)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Sieg, W., Cittadini, S.: Normal natural deduction proofs (in non-classical logics). In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 169–191. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge Tracts in Theoretical Computer Science, vol. 43. Camb. Univ. Press (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mauro Ferrari
    • 1
  • Camillo Fiorentini
    • 2
  1. 1.DiSTA, Univ. degli Studi dell’InsubriaVareseItaly
  2. 2.DI, Univ. degli Studi di MilanoMilanoItaly

Personalised recommendations