Keystroke Data Classification for Computer User Profiling and Verification

  • Tomasz Emanuel WesołowskiEmail author
  • Piotr Porwik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9330)


The article addresses the issues of behavioral biometrics. Presented research concerns an analysis of a user activity related to a keyboard use in a computer system. A method of computer user profiling based on encrypted keystrokes is introduced to ensure a high level of users data protection. User’s continuous work in a computer system is analyzed. This type of analysis constitutes a type of free-text analysis. Additionally, an attempt to user verification in order to detect intruders is performed. Intrusion detection is based on a modified k-NN classifier and different distance measures.


Behavioral biometrics Data classification Free text analysis Keystroke analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alsultan, A., Warwick, K.: Keystroke Dynamics Authentication: A Survey of Free-text Methods. J. of Computer Science Issues 10(4), 1–10 (2013). No. 1Google Scholar
  2. 2.
    Araujo, L.C.F., Sucupira Jr, L.H.R., Lizarraga, M.G., Ling, L.L., Yabu-Uti, J.B.T.: User Authentication Through Typing Biometrics Features. IEEE Transactions on Signal Processing 53(2), 851–855 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Banerjee, S.P., Woodard, D.L.: Biometric Authentication and Identification Using Keystroke Dynamics: A survey. J. of Pattern Recognition Research 7, 116–139 (2012)CrossRefGoogle Scholar
  4. 4.
    Dowland, P.S., Singh, H., Furnell, S.M.: A preliminary investigation of user authentication using continuous keystroke analysis. In: The 8th Annual Working Conference on Information Security Management and Small Systems Security (2001)Google Scholar
  5. 5.
    Filho, J.R.M., Freire, E.O.: On the Equalization of Keystroke Timing Histogram. Pattern Recognition Letters 27(13), 1440–1446 (2006)CrossRefGoogle Scholar
  6. 6.
    Foster, K.R., Koprowski, R., Skufca, J.D.: Machine learning, medical diagnosis, and biomedical engineering research - commentary. Biomedical Engineering Online 13, Article No. 94 (2014). doi: 10.1186/1475-925X-13-94
  7. 7.
    Gunetti, D., Picardi, C., Ruffo, G.: Keystroke analysis of different languages: a case study. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds.) IDA 2005. LNCS, vol. 3646, pp. 133–144. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  8. 8.
    Hu, J., Gingrich, D., Sentosa, A.: A k-nearest neighbor approach for user authentication through biometric keystroke dynamics. In: IEEE International Conference on Communications, pp. 1556–1560 (2008)Google Scholar
  9. 9.
    Killourhy, K.S., Maxion, R.A.: Comparing anomaly-detection algorithms for keystroke dynamics. In: International Conference on Dependable Systems & Networks (DSN 2009), pp. 125–134. IEEE Computer Society Press (2009)Google Scholar
  10. 10.
    Krawczyk, K., Woźniak, M., Cyganek, B.: Clustering-based ensembles for one-class classification. Information Sciences 264, 182–195 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kudłacik, P., Porwik, P.: A new approach to signature recognition using the fuzzy method. Pattern Analysis & Applications 17(3), 451–463 (2014). doi: 10.1007/s10044-012-0283-9 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kudłacik, P., Porwik, P., Wesołowski, T.: Fuzzy Approach for Intrusion Detection Based on User’s Commands. Soft Computing. Springer-Verlag, Heidelberg (2015). doi: 10.1007/s00500-015-1669-6
  13. 13.
    Lopatka, M., Peetz, M.: Vibration sensitive keystroke analysis. In: Proc. of The 18th Annual Belgian-Dutch Conference on Machine Learning, pp. 75–80 (2009)Google Scholar
  14. 14.
    Płys, M., Doroz, R., Porwik, P.: On-line signature recognition based on an analysis of dynamic feature. In: IEEE International Conference on Biometrics and Kansei Engineering, pp. 103–107. Tokyo Metropolitan University Akihabara (2013)Google Scholar
  15. 15.
    Teh, P.S., Teoh, A.B.J., Yue, S.: A Survey of Keystroke Dynamics Biometrics. The Scientific World Journal 2013, Article ID 408280, 24 (2013) . doi: 10.1155/2013/408280
  16. 16.
    Porwik, P., Doroz, R., Orczyk, T.: The k-NN classifier and self-adaptive Hotelling data reduction technique in handwritten signatures recognition. Pattern Analysis and Applications. doi: 10.1007/s10044-014-0419-1
  17. 17.
    Raiyn, J.: A survey of cyber attack detection strategies. International J. of Security and Its Applications 8(1), 247–256 (2014)CrossRefGoogle Scholar
  18. 18.
    Salem, M.B., Hershkop, S., Stolfo, S.J.: A survey of insider attack detection research. In: Advances in Information Security, vol. 39, pp. 69–90. Springer, US (2008)Google Scholar
  19. 19.
    Tappert, C.C., Villiani, M., Cha, S.: Keystroke biometric identification and authentication on long-text input. In: Wang, L., Geng, X. (eds.) Behavioral Biometrics for Human Identification: Intelligent Applications, pp. 342–367 (2010). doi: 10.4018/978-1-60566-725-6.ch016
  20. 20.
    Wesolowski, T., Palys, M., Kudlacik, P.: Computer user verification based on mouse activity analysis. In: Barbucha, D., Nguyen, N.T., Batubara, J. (eds.) New Trends in Intelligent Information and Database Systems. SCI, vol. 598, pp. 61–70. Springer, Heidelberg (2015) Google Scholar
  21. 21.
    Zhong, Y., Deng, Y., Jain, A.K.: Keystroke dynamics for user authentication. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 117–123 (2012). doi: 10.1109/CVPRW.2012.6239225

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of SilesiaSosnowiecPoland

Personalised recommendations