Advertisement

Blurred Labeling Segmentation Algorithm for Hyperspectral Images

  • Paweł KsieniewiczEmail author
  • Manuel Graña
  • Michał Woźniak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9330)

Abstract

This work is focusing on the hyperspectral imaging classification, which is nowadays a focus of intense research. The hyperspectral imaging is widely used in agriculture, mineralogy, or food processing to enumerate only a few important domains. The main problem of such image classification is access to the ground truth, because it needs the experienced experts. This work proposed a novel three-stage image segmentation method, which prepares the data for the classification and employs the active learning paradigm which reduces the expert works on image. The proposed approach was evaluated on the basis of the computer experiments carried out on the benchmark hyperspectral datasets.

Keywords

Machine learning Hyperspectral imaging Image processing Classification Classifier ensemble 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett, K.P., Demiriz, A.: Semi-supervised support vector machines. In: Advances in Neural Information Processing Systems, pp. 368–374. MIT Press (1998)Google Scholar
  2. 2.
    Rajan, S., Ghosh, J., Crawford, M.M.: An active learning approach to hyperspectral data classification. IEEE T. Geoscience and Remote Sensing 46(4), 1231–1242 (2008)CrossRefGoogle Scholar
  3. 3.
    Li, J., Bioucas-Dias, J.M., Plaza, A.: Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning. IEEE T. Geoscience and Remote Sensing 51(2), 844–856 (2013)CrossRefGoogle Scholar
  4. 4.
    Krawczyk, B., Filipczuk, P.: Cytological image analysis with firefly nuclei detection and hybrid one-class classification decomposition. Engineering Applications of Artificial Intelligence 31, 126–135 (2014)CrossRefGoogle Scholar
  5. 5.
    Jackowski, K.: Multiple classifier system with radial basis weight function. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010, Part I. LNCS, vol. 6076, pp. 540–547. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  6. 6.
    Davies, E.R.: Machine Vision: Theory, Algorithms, Practicalities. Elsevier, December 2004Google Scholar
  7. 7.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)CrossRefGoogle Scholar
  8. 8.
    Bengio, Y., Grandvalet, Y.: No unbiased estimator of the variance of k-fold cross-validation. J. Mach. Learn. Res. 5, 1089–1105 (2004)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Chi, M., Qian, Q., Benediktsson, J.A.: Cluster-based ensemble classification for hyperspectral remote sensing images. In: IGARSS, vol. 1, pp. 209–212. IEEE (2008)Google Scholar
  10. 10.
    Chi, M., Kun, Q., Benediktsson, J.A., Feng, R.: Ensemble classification algorithm for hyperspectral remote sensing data. IEEE Geoscience and Remote Sensing Letters 6(4) (2009)Google Scholar
  11. 11.
    Ceamanos, X., Waske, B., Benediktsson, J.A., Chanussot, J., Fauvel, M., Sveinsson, J.R.: A classifier ensemble based on fusion of support vector machines for classifying hyperspectral data. Int. J. Image Graphics 1(4), 293–307 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Paweł Ksieniewicz
    • 1
    Email author
  • Manuel Graña
    • 2
    • 3
  • Michał Woźniak
    • 1
  1. 1.Department of Systems and Computer NetworksWroclaw University of TechnologyWroclawPoland
  2. 2.University of the Basque CountryLeioaSpain
  3. 3.ENGINE CenterWroclaw University of TechnologyWroclawPoland

Personalised recommendations