Advertisement

A Probabilistic Ontology for the Prediction of Author’s Interests

  • Emna HlelEmail author
  • Salma Jamoussi
  • Abdelmajid Ben Hamadou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9330)

Abstract

The Bayesian network, a probabilistic model of knowledge representation, has the ability to represent and reason with uncertainty. It measures the dependencies between a set of variables and infer new knowledge. In this paper, we try to propose a method for building a probabilistic ontology, which models a list of publications (dblp base). We have used for this aim a Bayesian Network to measure dependencies between different instances of ontology and to infer new interests of authors from obtained Probabilistic Ontology.

Keywords

Classical ontology Probabilistic ontology Bayesian network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    da Costa, P.C.G., Laskey, K.B., Laskey, K.J.: PR-OWL: a bayesian ontology language for the semantic web. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 88–107. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Gruber, T.: Towards Principles for the Design of Ontologies Used for Knowledge Sharing. International Journal of Human and Computer Studies, 907–928 (1995)Google Scholar
  3. 3.
    Philippe, L.: Réseaux bayésiens: apprentissage et modélisation de systèmes complexes. Habilitation (2006)Google Scholar
  4. 4.
    Mechraoui, A., Thiriet, J.-M., Gentil, S.: Aide à la décision et diagnostic par réseaux bayésiens d’un robot mobile commandé en réseau. In: Actes de la Sixième Conférence Internationale Francophone d’Automatique (2010)Google Scholar
  5. 5.
    Onisko, A., Druzdzel, M.J., Wasyluk, H.: A probabilistic causal model for diagnosis of liver disorders. In: Proceedings of the 7 th Symposium on Intelligent Information Systems, pp. 379–387, June 1998Google Scholar
  6. 6.
    Naim, P., Wuillemin, P.H., Leray, P., Pourret, O., Becker, A.: Réseaux Bayésiens. Editions Eyrolles (2008)Google Scholar
  7. 7.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmnn, in Representation and Reasoning, CA (1988)Google Scholar
  8. 8.
    Essaid, A., Ben Yaghlane, B.: BeliefOWL: an evidential representation in OWL ontology. In: International Workshop on Uncertainty Reasoning for the Semantic Web, Washington DC, USA, pp. 77–80 (2009)Google Scholar
  9. 9.
    Ding, Z., Peng, Y.: A probabilistic extension to ontology language OWL. In: Proceedings HICSS, pp. 5–8 (2004)Google Scholar
  10. 10.
    Yang, Y., Calmet, J.: Ontobayes: an ontology-driven uncertainty model. In: Proceeding of the International Conference on Intelligent Agents, Web Technologies and Internet Commerce (IAWTIC 2005), pp. 457–464 (2005)Google Scholar
  11. 11.
    Arsene, O., Dumitrache, I., Mihu, I.: Medicine expert system dynamic Bayesian Network and ontology based. Expert Systems with Applications 38, 253–261 (2011)CrossRefGoogle Scholar
  12. 12.
    Fabio, G., Polastroa, R.B., Takiyamaa, F.I., Revoredob, K.C.: Computing Inferences for Credal ALC Terminologies. In: URSW, pp. 94–97 (2011)Google Scholar
  13. 13.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)Google Scholar
  14. 14.
    Carvalho, R.N.: Probabilistic ontology: Representation and modeling methodology, Ph.D., George Mason University, Fairfax, VA, USA (2011)Google Scholar
  15. 15.
    Jordan, M.: Learning in Graphical Models. Kluwer Academic Publishers, Dordecht (1998)CrossRefGoogle Scholar
  16. 16.
    Jacobs, R., Jordan, M., Nowlan, S., Hinton, G.: Adaptive mixtures of local experts. Neural Computation, 79–87 (1991)Google Scholar
  17. 17.
    Myung, J.: Tutorial Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 90–100 (2002)Google Scholar
  18. 18.
    Hebeler, J., Fisher, M., Blace, R., Perez-Lopez, A.: Semantic web programming, Foreword by Mike Dean, Principal Engineer, BBN Technologies, livre (2009)Google Scholar
  19. 19.
    Bayes, T., Price, R.: An Essay towards Solving a Problem in the Doctrine of Chances, Philosophical Transactions of the Royal Society of London, pp. 370–418 (1763)Google Scholar
  20. 20.
    Lauritzen, S.L., Spiegelhalter, D.J.: Local computation with probabilities and graphical structures and their application to expert systems. J. Royal Statistical Society, 157–224 (1988)Google Scholar
  21. 21.
    Scutari, M.: Package ‘bnlearn’: Bayesian network structure learning, parameter learning and inference (2014). http://www.bnlearn.com
  22. 22.
    Højsgaard, S.: Graphical independence networks with the gRain package for R. Journal of Statistical Software 46(10), 1–26 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Emna Hlel
    • 1
    Email author
  • Salma Jamoussi
    • 1
  • Abdelmajid Ben Hamadou
    • 1
  1. 1.Miracl LaboratoryTechnology Center of SfaxSakiet Ezzit, SfaxTunisia

Personalised recommendations