Performance Evaluation of Multi-UAV Cooperative Mission Planning Models

  • Cristian Ramirez-AtenciaEmail author
  • Gema Bello-Orgaz
  • Maria D. R-Moreno
  • David Camacho
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9330)


The Multi-UAV Cooperative Mission Planning Problem (MCMPP) is a complex problem which can be represented with a lower or higher level of complexity. In this paper we present a MCMPP which is modelled as a Constraint Satisfaction Problem (CSP) with 5 increasing levels of complexity. Each level adds additional variables and constraints to the problem. Using previous models, we solve the problem using a Branch and Bound search designed to minimize the fuel consumption and number of UAVs employed in the mission, and the results show how runtime increases as the level of complexity increases in most cases, as expected, but there are some cases where the opposite happens.


Unmanned aircraft systems Mission planning Constraint satisfaction problems Branch and bound 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM, 832–843 (1983)Google Scholar
  2. 2.
    Barták, R.: Constraint programming: in pursuit of the holy grail. In: Week of Doctoral Students, pp. 555–564 (1999)Google Scholar
  3. 3.
    Chiang, W.C., Russell, R.A.: Simulated annealing metaheuristics for the vehicle routing problem with time windows. Annals of Operations Research 63, 3–27 (1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    Doherty, P., Kvarnström, J., Heintz, F.: A temporal logic-based planning and execution monitoring framework for Unmanned Aircraft Systems. Autonomous Agents and Multi-Agent Systems 19(3), 332–377 (2009)CrossRefGoogle Scholar
  5. 5.
    Fabiani, P., Fuertes, V., Piquereau, A., Mampey, R., Teichteil-Konigsbuch, F.: Autonomous flight and navigation of VTOL UAVs: from autonomy demonstrations to out-of-sight flights. Aerospace Science and Technology 11(2–3), 183–193 (2007)CrossRefGoogle Scholar
  6. 6.
    Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robot. 29(2), 315–378 (2012)CrossRefGoogle Scholar
  7. 7.
    Kvarnström, J., Doherty, P.: Automated planning for collaborative UAV systems. In: Control Automation Robotics & Vision, pp. 1078–1085, December 2010Google Scholar
  8. 8.
    Leary, S., Deittert, M., Bookless, J.: Constrained UAV mission planning: a comparison of approaches. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 2002–2009, November 2011Google Scholar
  9. 9.
    Mouhoub, M.: Solving temporal constraints in real time and in a dynamic environment. Tech. Rep. WS-02-17. AAAI (2002)Google Scholar
  10. 10.
    Mouhoub, M.: Reasoning with numeric and symbolic time information. Artif. Intell. Rev. 21(1), 25–56 (2004)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ramirez-Atencia, C., Bello-Orgaz, G., R-Moreno, M.D., Camacho, D.: A simple CSP-based model for unmanned air vehicle mission planning. In: IEEE International Symposium on INnovations in Intelligent SysTems and Application, pp. 146–153 (2014)Google Scholar
  12. 12.
    Ramírez-Atencia, C., Bello-Orgaz, G., R-Moreno, M.D., Camacho, D.: Branching to find feasible solutions in unmanned air vehicle mission planning. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 286–294. Springer, Heidelberg (2014) Google Scholar
  13. 13.
    Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and Programming with Gecode (2010).
  14. 14.
    Schumacher, C., Chandler, P., Pachter, M., Pachter, L.: UAV Task Assignment with Timing Constraints via Mixed-Integer Linear Programming. Tech. rep, DTIC Document (2004)Google Scholar
  15. 15.
    Schwalb, E., Vila, L.: Temporal constraints: A survey. Constraints 3(2–3), 129–149 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tang, L., Zhu, C., Zhang, W., Liu, Z.: Robust mission planning based on nested genetic algorithm. In: 2011 Fourth International Workshop on Advanced Computational Intelligence (IWACI), pp. 45–49, October 2011Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Cristian Ramirez-Atencia
    • 1
    Email author
  • Gema Bello-Orgaz
    • 1
  • Maria D. R-Moreno
    • 2
  • David Camacho
    • 1
  1. 1.Departamento de Ingeniería InformáticaUniversidad Autónoma de MadridMadridSpain
  2. 2.Departamento de AutomáticaUniversidad de AlcaláMadridSpain

Personalised recommendations