Advertisement

InterCriteria Analysis of Parameters Relations in Fermentation Processes Models

  • Olympia Roeva
  • Peter Vassilev
  • Maria Angelova
  • Tania Pencheva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9330)

Abstract

In this paper the application of InterCriteria Analysis (ICA) is presented. The approach is based on the apparatuses of index matrices and intuitionistic fuzzy sets. ICA is applied to establish the relations and dependencies of defined parameters in non-linear models of Escherichia coli MC4110 and Saccharomyces cerevisiae fermentation processes. Parameter identification of both fed-batch process models has been done using three kinds of genetic algorithms (GA) – standard single population GA (SGA) and two SGA modifications. The obtained results are discussed in the lights of ICA and some conclusions about existing relations and dependencies between model parameters are derived.

Keywords

InterCriteria Analysis Genetic algorithms Binary-coded Real-coded Fermentation process E. coli S. cerevisiae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angelova, M.: Modified Genetic Algorithms and Intuitionistic Fuzzy Logic for Parameter Identification of a Fed-batch Cultivation Model. PhD Thesis, Sofia (2014). (in Bulgarian)Google Scholar
  2. 2.
    Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  3. 3.
    Atanassov, K., Mavrov, D., Atanassova, V.: Intercriteria Decision Making: A New Approach for Multicriteria Decision Making, Based on Index Matrices and Intuitionistic Fuzzy Sets. Issues in IFSs and GNs 11, 1–8 (2014)Google Scholar
  4. 4.
    Atanassov, K., Szmidt, E., Kacprzyk, J.: On Intuitionistic Fuzzy Pairs. Notes on IFS 19(3), 1–13 (2013)zbMATHGoogle Scholar
  5. 5.
    Atanassov, K.: On Index Matrices, Part 1: Standard Cases. Advanced Studies in Contemporary Mathematics 20(2), 291–302 (2010)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Atanassov, K.: On Index Matrices, Part 2: Intuitionistic Fuzzy Case. Proceedings of the Jangjeon Mathematical Society 13(2), 121–126 (2010)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Atanassov, K., Atanassova, V., Gluhchev, G.: InterCriteria Analysis: Ideas and Problems. Notes on Intuitionistic Fuzzy Sets 21(1), 81–88 (2015)Google Scholar
  8. 8.
    Bastin, G., Dochain, D.: On-line Estimation and Adaptive Control of Bioreactors. Elsevier Scientific Publications (1991)Google Scholar
  9. 9.
    Boussaid, I., Lepagnot, J., Siarry, P.: A Survey on Optimization Metaheuristics. Information Sciences 237, 82–117 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, Z.-Q., Wang, R.-L.: Two Efficient Real-coded Genetic Algorithms for Real Parameter Optimization. International Journal of Innovative Computing, Information and Control 7(8), 4871–4883 (2011)Google Scholar
  11. 11.
    Gen, M., Cheng, R.: Genetic Algorithms and Engineering Optimization. Wiley, New York (2000)Google Scholar
  12. 12.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley Longman, London (1989)zbMATHGoogle Scholar
  13. 13.
    Goldberg, D.E.: Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking. Complex Systems 5, 139–167 (1991)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Lin, C.-L., Huang, C.-H., Tsai, C.-W.: Structure-specified real coded genetic algorithms with applications. In: Sajja, P.S., Akerkar, R. (eds.) Advanced Knowledge Based Systems: Model, Applications & Research, chap. 8, vol. 1, pp. 160–187 (2010)Google Scholar
  15. 15.
    Mohideen, A.K., Saravanakumar, G., Valarmathi, K., Devaraj, D., Radhakrishnan, T.K.: Real-coded Genetic Algorithm for System Identification and Tuning of a Modified Model Reference Adaptive Controller for a Hybrid Tank System. Applied Mathematical Modelling 37, 3829–3847 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Peltokangas, R., Sorsa, A.: Real-coded genetic algorithms and nonlinear parameter identification. In: 4th International IEEE Conference on Intelligent Systems - IS 2008, vol. 2, pp. 10–42 - 10–47 (2008)Google Scholar
  17. 17.
    Pencheva, T., Roeva, O., Hristozov, I.: Functional State Approach to Fermentation Processes Modelling. Prof. Marin Drinov Academic Publishing House, Sofia (2006)Google Scholar
  18. 18.
    Pencheva, T., Angelova, M., Atanassova, V., Roeva, O.: InterCriteria Analysis of Genetic Algorithm Parameters in Parameter Identification. Notes on Intuitionistic Fuzzy Sets 21(2), 99–110 (2015)Google Scholar
  19. 19.
    Roeva, O., Kosev, K., Trenkova, T.: A modified multi-population genetic algorithm for parameter identification of cultivation process models. In: Proc. of the ICEC 2010, Valencia, pp. 348–351 (2010)Google Scholar
  20. 20.
    Roeva, O.: A Modified Genetic Algorithm for a Parameter Identification of Fermentation Processes. Biotechnology and Biotechnological Equipment 20(1), 202–209 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Olympia Roeva
    • 1
  • Peter Vassilev
    • 1
  • Maria Angelova
    • 1
  • Tania Pencheva
    • 1
  1. 1.Institute of Biophysics and Biomedical EngineeringBulgarian Academy of ScienceSofiaBulgaria

Personalised recommendations