Advertisement

Cryptanalysis of SDES Using Modified Version of Binary Particle Swarm Optimization

  • Kamil DworakEmail author
  • Urszula Boryczka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9330)

Abstract

Nowadays, information security is based on ciphers and cryptographic systems. What evaluates the quality of such security measures is cryptanalysis. This paper presents a new cryptanalysis attack aimed at a ciphertext generated with the use of the SDES (Simplified Data Encryption Standard). The attack was carried out with a modified version of the BPSO (Binary Particle Swarm Optimization) algorithm. A well-adjusted version of this method can have a positive effect on the quality of the results obtained in a given period of time.

Keywords

Simplified Data Encryption Standard Binary Particle Swarm Optimization Particle Swarm Optimization Cryptanalysis Cryptography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boryczka, U., Dworak, K.: Genetic transformation techniques in cryptanalysis. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) ACIIDS 2014, Part II. LNCS, vol. 8398, pp. 147–156. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  2. 2.
    Clark, A.J.: Optimisation Heuristics for Cryptology. PhD thesis. Information Research Centre Faculty of Information Technology Queensland (1998)Google Scholar
  3. 3.
    Engelbrecht, A.P.: Fundamentals of computional swarm intelligence. Wiley (2005)Google Scholar
  4. 4.
    Garg, P.: Cryptanalysis of SDES via Evolutionary Computation Techniques. International Journal of Computer Science and Information Security 1(1) (2009)Google Scholar
  5. 5.
    Kahn, D.: The Code-breakers. Scribner (1996)Google Scholar
  6. 6.
    Kenan, K.: Cryptography in the databases. The Last Line of Defense. Addison Wesley Publishing Company (2005)Google Scholar
  7. 7.
    Kennedy, J., Eberhart, R.C.: New optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micromachine and Human Science (1995)Google Scholar
  8. 8.
    Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm optimization. In: Proc. of the Conference on Systems, Man, and Cybernetics SMC 1997 (1997)Google Scholar
  9. 9.
    Menezes, A.J., Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press (1997)Google Scholar
  10. 10.
    Nalini, N., Raghavendra, R.: Cryptanalysis of Block Ciphers via Improvised Particle Swarm Optimization and Extended Simulated Annealing Techniques. International Journal of Network Security 6(3) (2008)Google Scholar
  11. 11.
    Schaefer, E.: A simplified data encryption standard algorithm. Cryptologia 20(1) (1996)Google Scholar
  12. 12.
    Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd edn. Wiley (1996)Google Scholar
  13. 13.
    Shen, Q., Jiang, J.H., Jiao, C.X., Shen, G.L., Yu, R.Q.: Modified particle swarm optimization algorithm for variable selection in MLR and PLS modeling: QSAR studies of antagonism of angiotensin II antagonists. European Journal of Pharmaceutical Sciences 22 (2004)Google Scholar
  14. 14.
    Stinson, D.S.: Cryptography. Theory and Practice. Chapman & Hall/CRC Taylor & Francois Group, Boca Raton (2006) zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Future ProcessingGliwicePoland
  2. 2.Institute of Computer ScienceUniversity of SilesiaSosnowiecPoland

Personalised recommendations