Risk Analysis and Quantification of Vulnerability in Maritime Transportation Network Using AIS Data

  • Kiyotaka IdeEmail author
  • Loganathan Ponnambalam
  • Akira Namatame
  • Fu Xiuju
  • Rick Siow Mong Goh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9335)


The risk analysis and vulnerability quantification in the global maritime transportation networks are important to maintain the healthy economy in today’s world. In this paper, we analyze the auto identification system (AIS) data that provides us with the real-time location of vessels. The AIS data of a Japanese company was used to compute the throughputs of the ports for the vessel it operates and the topology of the global maritime transportation network during a certain time period. Firstly, we computed the conventional un-weighted node-level characteristics and compared it with the port throughput. This comparison shows the statistically significant correlations, especially, with the in-degree and the Page-Rank. Secondly, we modeled and simulate to quantify the vulnerability and importance of each port identified from the AIS data. The simulation results indicate that Singapore is the most robust and influential port when disrupted. In addition, we introduce a method to compute the vulnerability and importance analytically. Subsequent research will be required to extend the proposed analysis to the complete data sets for all cargo-ships and utilize the high performance computing technologies to accelerate the computation.


Automatic identification system AIS Complex network analysis Open data analysis Risk assessment Maritime transportation network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Woolley-Meza, O., et al.: Complexity in human transportation networks: a comparative analysis of worldwide air transportation and global cargo-ship movements. Eur. Phys. J. B 84, 589–600 (2011)CrossRefGoogle Scholar
  2. 2.
    Kaluza, P., Kolzsch, A., Gastner, M.T., Blasius, B.: The complex network of global cargo ship movements. J. R. Soc. Interface 7, 1093 (2010)CrossRefGoogle Scholar
  3. 3.
    Ducruet, C., et al.: Centrality and vulnerability in liner shipping networks: revisiting the Northeast Asian Port hierarchy. Maritime Policy and Management 37(1), 17–36 (2010)CrossRefGoogle Scholar
  4. 4.
    Ducruet, C., et al.: Structure and dynamics of liner shipping networks. In: 2010 Annual Conference of the International Association of Maritime Economics, Lisbon, pp. 7–9 (2010)Google Scholar
  5. 5.
    Ducruet, C., et al.: Structure and dynamics of transportation networks: models, methods and applications. In: Rodrigue, J.P., Notteboom, T.E., Shaw, J. (eds.) The SAGE Handbook of Transport Studies, SAGE, pp. 347–364 (2013)Google Scholar
  6. 6.
    Montes, C.P., Seoane, M.J.F., Laxe, F.G.: General cargo and containership emergent routes: A complex networks descriotion. Transport Policy 2, 4126–4140 (2012)Google Scholar
  7. 7.
    Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47–94 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Advances in Physics 51, 1079–1187 (2002)CrossRefGoogle Scholar
  9. 9.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Critical phenomena in complex networks. Reviews of Modern Physics 80, 1275 (2008)CrossRefGoogle Scholar
  11. 11.
    Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Physical Reviews E 63, 066117 (2001)CrossRefGoogle Scholar
  12. 12.
    Boguña, M., Pastor-Satorras, R., Vespignani, A.: Absence of Epidemic Threshold in Scale-Free Networks with Degree Correlations 90, 028701 (2003)Google Scholar
  13. 13.
    Wang, Y., Chakrabarti, D., Wang, C., Faloutsos, C.: Epidemic spreading in real networks: an eigenvalue viewpoint. In: Proceedings of SRDS, pp. 25–34 (2003)Google Scholar
  14. 14.
    Van Mieghem, P., Omic, J.S., Kooij, R.E.: Virus spread in networks. IEEE/ACM Trans. Net. 17(1), 1–14 (2009)CrossRefGoogle Scholar
  15. 15.
    Hinkelman, E.G.: Dictionary Of International Trade, 8th edn. World Trade Press, Brno (2008)Google Scholar
  16. 16.
    Bavelas, A.: Communication patterns in task-oriented groups. J. Acoust. Soc. Am. 22(6), 725–730 (1950)CrossRefGoogle Scholar
  17. 17.
    Sabidussi, G.: The centrality index of a graph. Psychometrika 31, 581–603 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Freeman, L.: A set of measures of centrality based upon betweenness. Sociometry 40, 35–41 (1977)CrossRefGoogle Scholar
  19. 19.
    Stephenson, K., Zelen, M.: Rethinking centrality: methods and examples. Soc. Netw. 11, 1–37 (1989)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Newman, M.E.J.: Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality, Phys. Rev. E 64, 016132 (2001)Google Scholar
  21. 21.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30, 107–117 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kiyotaka Ide
    • 1
    Email author
  • Loganathan Ponnambalam
    • 2
  • Akira Namatame
    • 1
  • Fu Xiuju
    • 2
  • Rick Siow Mong Goh
    • 2
  1. 1.Department of Computer ScienceNational Defense Academy of JapanYokosukaJapan
  2. 2.Computing Science, Institute of High Performance ComputingA*STARSingaporeSingapore

Personalised recommendations