Learning Analytics: Trends and Issues of the Empirical Research of the Years 2011–2014

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9307)

Abstract

In very recent years, the advent of Learning Analytics (LA) has resulted in a number of publications reporting on empirical research. This literature overview identifies the mainstream of empirical LA research, and emphasizes insufficiently investigated directions that display a higher innovation potential. The mainstream consists of learning trajectory visualizations aimed to predict learner success. Single studies prove innovative by addressing in particular: informal educational settings, video and audio records as data sources, automated assessment and error/misconception analysis. A central issue of empirical LA research consists of the frequent lack of an explicit theoretical framework from educational perspective. We maintain that educational and psychological theories are urgently needed for significant progress of upcoming LA research.

Keywords

Learning analytics Empirical educational research Literature review 

References

  1. 1.
    Baker, R., Siemens, G.: Educational data mining and learning analytics. In: Sawyer, R.K. (ed.) The Cambridge Handbook of the Learning Sciences, 2nd edn, pp. 253–274. Cambridge University Press, Cambridge (2015)Google Scholar
  2. 2.
    Johnson, L., Smith, R., Willis, H., et al.: The 2011 Horizon Report. The New Media Consortium, Austin (2011)Google Scholar
  3. 3.
    Günnemann, N., Derntl, M., Klamma, R., et al.: An interactive system for visual analytics of dynamic topic models. Datenbank Spektrum 13(3), 213–223 (2013)CrossRefGoogle Scholar
  4. 4.
    Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)CrossRefGoogle Scholar
  5. 5.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(1), 993–1022 (2003)MATHGoogle Scholar
  6. 6.
    Pistilli, M.D., Willis, J., Koch, D., et al. (eds.): Proceedings of Learning Analytics and Knowledge Conference 2014, LAK 2014. ACM, New York (2014)Google Scholar
  7. 7.
    Rensing, C., de Freitas, S., Ley, T., Muñoz-Merino, P.J.: Open learning and teaching in educational communities. In: Rensing, C., de Freitas, S., Ley, T., Muñoz-Merino, P.J. (eds.) EC-TEL 2014. LNCS, vol. 8719. Springer, Switzerland (2014)Google Scholar
  8. 8.
    Bogarín, A., Romero, C., Cerezo, R., et al.: Clustering for improving educational process mining. In: [6], pp. 11–15 (2014)Google Scholar
  9. 9.
    Clow, D.: Data wranglers: human interpreters to help close the feedback loop. In: [6], pp. 49–53 (2014)Google Scholar
  10. 10.
    Coopey, E., Shapiro, R.B., Danahy, E.: Collaborative spatial classification. In: [6], pp. 138–142 (2014)Google Scholar
  11. 11.
    Fancsali, S.E., Ritter, S.: Context personalization, preferences, and performance in an intelligent tutoring system for middle school mathematics. In: [6], pp. 73–77 (2014)Google Scholar
  12. 12.
    Gasevicm, D., Mirriahi, N., Dawson, S.: Analytics of the effects of video use and instruction to support reflective learning. In: [6], pp. 123–132 (2014)Google Scholar
  13. 13.
    Hecking, T., Ziebarth, S., Hoppe, H.U.: Analysis of dynamic resource access patterns in a blended learning course. In: [6], pp. 173–182 (2014)Google Scholar
  14. 14.
    Mendiburo, M., Sulcer, B., Hasselbring, T.S.: Interaction design for improved analytics. In: [6], pp. 78–82 (2014)Google Scholar
  15. 15.
    Nam, S., Lonn, S., Brown, T., et al.: Customized course advising: investigating engineering student success with incoming profiles and patterns of concurrent course enrollment. In: [6], pp. 16–25 (2014)Google Scholar
  16. 16.
    Okada, M., Tada, M.: Formative assessment method of real-world learning by integrating heterogeneous elements of behavior, knowledge, and the environment. In: [6], pp. 1–10 (2014)Google Scholar
  17. 17.
    Raca, M., Tormey, R., Dillenbourg, P.: Sleepers’ lag - study on motion and attention. In: [6], pp. 36–43 (2014)Google Scholar
  18. 18.
    Santos, J.L., Klerkx, J., Duval, E., et al.: Success, activity and drop-outs in MOOCs an exploratory study on the UNED COMA courses. In: [6], pp. 98–102 (2014)Google Scholar
  19. 19.
    Vozniuk, A., Holzer, A., Gillet, D.: Peer assessment based on ratings in a social media course. In: [6], pp. 133–137 (2014)Google Scholar
  20. 20.
    Cabielles-Hernández, D., Pérez Pérez, J.R., Paule-Ruiz, M.P., et al.: dmTEA: mobile learning to aid in the diagnosis of autism spectrum disorders. In: [7], pp. 29–41 (2014)Google Scholar
  21. 21.
    González López, S., López-López, A.: Analysis of concept sequencing in student drafts. In: [7], pp. 422–427 (2014)Google Scholar
  22. 22.
    Janning, R., Schatten, C., Schmidt-Thieme, L.: Feature analysis for affect recognition supporting task sequencing in adaptive intelligent tutoring systems. In: [7], pp. 179–192 (2014)Google Scholar
  23. 23.
    Loboda, T.D., Guerra, J., Hosseini, R., et al.: Mastery grids: an open source social educational progress visualization. In: [7], pp. 235–248 (2014)Google Scholar
  24. 24.
    McTavish, T.S., Larusson, J.A.: Labeling mathematical errors to reveal cognitive states. In: [7], pp. 446–451 (2014)Google Scholar
  25. 25.
    Vahdat, M., Oneto, L., Ghio, A., et al.: A learning analytics methodology to profile students behavior and explore interactions with a digital electronics simulator. In: [7], pp. 596–597 (2014)Google Scholar
  26. 26.
    Niemann, K., Wolpers, M.: Usage-based clustering of learning resources to improve recommendations. In: [7], pp. 317–330 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Psychology and Educational SciencesLudwig-Maximilians-UniversitätMunichGermany
  2. 2.Faculty of Human SciencesUniversität der Bundeswehr MünchenNeubibergGermany
  3. 3.Richard W. Riley College of Education and LeadershipWalden UniversityMinneapolisUSA
  4. 4.Advanced Community Information Systems (ACIS) GroupRWTH Aachen UniversityAachenGermany

Personalised recommendations