Advertisement

Towards Reading Session-Based Indicators in Educational Reading Analytics

  • Madjid Sadallah
  • Benoît Encelle
  • Azze-Eddine Maredj
  • Yannick Prié
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9307)

Abstract

It is a challenging task to identify eLearning courses parts that have to be revised to best suit learners’ requirements. Reading being one of the most salient learning activities, one way of doing so is to study how learners consume courses. We intend to support course authors (e.g. teachers) during courses revision by providing them with reading indicators. We use the concept of reading session to denote a learner’s active reading period, and we provide several associated reading indicators. In our server-side approach, reading sessions and indicators are calculated using web server logs. We evaluate the relevance of our proposals using logs from a major French eLearning platform. Results are promising: calculated reading sessions are theoretically more precise than other best applicable approaches, and course authors consider suggested indicators to be appropriate to courses revision. Using reading sessions and associated indicators could facilitate authors’ work of course reengineering.

Keywords

Reading analytics Reading monitoring Reading indicators Reading sessions Web log mining 

References

  1. 1.
    Sadallah, M., Encelle, B, Maredj, A.-E., Prié, Y.: A Framework for usage-based document reengineering. In: 2013th ACM Symposium on Document Engineering DocEng 2013, pp. 99–102. ACM, New York (2013)Google Scholar
  2. 2.
    Hauger, D., Paramythis, A., Weibelzahl, S.: Using browser interaction data to determine page reading behavior. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 147–158. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  3. 3.
    Zahoor, S., Rajput, D., Bedekar, M., Kosamkar, P.: Capturing, understanding and interpreting user interactions with the browser as implicit interest indicators. In: 2015th International Conference on Pervasive Computing (ICPC), pp. 1–6. IEEE Press, New York (2015)Google Scholar
  4. 4.
    Pahl, C., Donnellan, D.: Data mining technology for the evaluation of web-based teaching and learning systems. In: 7th International Conference on E-Learning in Business, Government and Higher Education, pp. 15–19. Dublin City University, Dublin (2002)Google Scholar
  5. 5.
    Arroyo, I., Murray, T., Park Woolf, B., Beal, C.R.: Inferring unobservable learning variables from students’ help seeking behavior. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 782–784. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  6. 6.
    Feng, M., Heffernan, N.T., Koedinger, K.R.: Looking for sources of error in predicting student’s knowledge. In: 2005 AAAI Workshop on Educational Data Mining, pp. 54–61. AAAI Press, California (2005)Google Scholar
  7. 7.
    Hofmann, K., Reed, C., Holz, H.: Unobtrusive data collection for web-based social navigation. In: Workshop on the Social Navigation and Community based Adaptation Technologies, pp. 570–575. National College of Ireland, Dublin (2006)Google Scholar
  8. 8.
    Kovanović, V., Gašević, D., Dawson, S., Joksimović, S., Baker, R.S., Hatala, M.: Penetrating the black box of time-on-task estimation. In: 5th International Conference on Learning Analytics And Knowledge, pp. 184–193. ACM, New York (2015)Google Scholar
  9. 9.
    Mobasher, B.: Data mining for web personalization. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 90–135. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  10. 10.
    Marquardt, C.G., Becker, K., Ruiz, D.D.: A pre-processing tool for web usage mining in the distance education domain. In: Database Engineering and Applications Symposium IDEAS 2004, pp. 78–87. IEEE Press, New York (2004)Google Scholar
  11. 11.
    Aula, A., Khan, R.M., Guan., Z.: How does search behavior change as search becomes more difficult? In: SIGCHI Conference on Human Factors in Computing Systems, pp. 35–44. ACM, New York (2010)Google Scholar
  12. 12.
    Kazanidis, I., Valsamidis, S., Kontogiannis, S., Karakos, A.: Measuring and mining LMS data. In: 2012 16th Panhellenic Conference on Informatics (PCI), pp. 296–301. IEEE Press, New York (2012)Google Scholar
  13. 13.
    Bousbia, N., Rebaï, I., Labat, J.-M., Balla, A.: Learners’ navigation behavior identification based on trace analysis. User Model. User-Adap. Inter. 20(5), 455–494 (2010)CrossRefGoogle Scholar
  14. 14.
    Zaíane, O.R.: Building a recommender agent for E-learning systems. In: International Conference on Computers in Education, pp. 55–59. IEEE Press, New York (2002)Google Scholar
  15. 15.
    Klašnja-Milićević, A., Vesin, B., Ivanović, M., Budimac, Z.: E-Learning personalization based on hybrid recommendation strategy and learning style identification. Comput. Educ. 56(3), 885–899 (2011)CrossRefGoogle Scholar
  16. 16.
    Brown, A.H., Green, T.: Time students spend reading threaded discussions in online graduate courses requiring asynchronous participation. Int. Rev. Res. Open Distrib. Learn. 10(6), 51–64 (2009)CrossRefGoogle Scholar
  17. 17.
    Romero, M., Barberà, E.: Quality of e-Learners’ time and learning performance beyond quantitative time-on-task. Int. Rev. Res. Open Distrib Learn. 12(5), 125–137 (2011)CrossRefGoogle Scholar
  18. 18.
    Munk, M., Drlik, M.: Influence of different session timeouts thresholds on results of sequence rule analysis in educational data mining. In: Cherifi, H., Zain, J.M., El-Qawasmeh, E. (eds.) DICTAP 2011, Part I. CCIS, vol. 166, pp. 60–74. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  19. 19.
    Cooley, R., Mobasher, B., Srivastava, J.: Web mining: information and pattern discovery on the world wide web. In: 9th IEEE International Conference on Tools with Artificial Intelligence, pp. 558–567. IEEE Press, New York (1997)Google Scholar
  20. 20.
    Cooley, R., Mobasher, B., Srivastava, J.: Data preparation for mining world wide web browsing patterns. Knowl. Inf. Syst. 1, 5–32 (1999)CrossRefGoogle Scholar
  21. 21.
    Huynh, T., Miller, J.: Empirical observations on the session timeout threshold. Inf. Process. Manage. 45(5), 513–528 (2009)CrossRefGoogle Scholar
  22. 22.
    del Valle, R., Duffy, T.: Online learning: learner characteristics and their approaches to managing learning. Instr. Sci. 37(2), 129–149 (2009)CrossRefGoogle Scholar
  23. 23.
    Wise, A., Speer, J., Marbouti, F., Hsiao, Y.-T.: Broadening the notion of participation in online discussions: examining patterns in learners’ online listening behaviors. Instr. Sci. 41(2), 323–343 (2013)CrossRefGoogle Scholar
  24. 24.
    Perera, D., Kay, J., Koprinska, I., Yacef, K., Zaïane, O.R.: Clustering and sequential pattern mining of online collaborative learning data. IEEE Trans. Knowl. Data Eng. 21(6), 759–772 (2009)CrossRefGoogle Scholar
  25. 25.
    Lehmann, J., Müller-Birn, C., Laniado, D., Lalmas, M., Kaltenbrunner, A.: Reader preferences and behavior on wikipedia. In: 25th ACM Conference on Hypertext and Social Media, pp. 88–97. ACM, New York (2014)Google Scholar
  26. 26.
    Ross, S.M.: Peirce’s criterion for the elimination of suspect experimental data. J. Eng. Technol. 20(2), 38–41 (2003)Google Scholar
  27. 27.
    McEneaney, J.E.: Graphic and numerical methods to assess navigation in hypertext. Int. J. Hum. Comput. Stud. 55(5), 761–786 (2001)CrossRefzbMATHGoogle Scholar
  28. 28.
    Gwizdka, J., Spence, I.: Implicit measures of lostness and success in web navigation. Interact. Comput. 19(3), 357–369 (2007)CrossRefGoogle Scholar
  29. 29.
    Herder, E.: Revisitation patterns and disorientation. In: German Workshop on Adaptivity and User Modeling in Interactive Systems ABIS03, pp. 291–294. University of Karlsruhe, Germany (2003)Google Scholar
  30. 30.
    Berendt, B., Mobasher, B., Spiliopoulou, M., Wiltshire, J.: Measuring the accuracy of sessionizers for web usage analysis. In: Workshop on Web Mining at the 1st SIAM International Conference on Data Mining, pp. 7–14 (2001)Google Scholar
  31. 31.
    Vázquez, A., Oliveira, J.G., Dezsö, Z., Goh, K.-I., Kondor, I., Barabási, A.-L.: Modeling bursts and heavy tails in human dynamics. Physical Review E. 73(3), 036127–1:036127–19. American Physical Society, USA (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Madjid Sadallah
    • 1
    • 2
  • Benoît Encelle
    • 3
  • Azze-Eddine Maredj
    • 2
  • Yannick Prié
    • 4
  1. 1.Computer Science DepartmentUniversity of BejaiaBejaiaAlgeria
  2. 2.Research Center on Scientific and Technical Information CERISTAlgiersAlgeria
  3. 3.LIRIS, UMR 5205 CNRSUniversité de Lyon 1LyonFrance
  4. 4.LINA - UMR 6241 CNRSUniversité de NantesNantesFrance

Personalised recommendations