Advertisement

Reasoning in Expressive Description Logics under Infinitely Valued Gödel Semantics

  • Stefan Borgwardt
  • Rafael Peñaloza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9322)

Abstract

Fuzzy Description Logics (FDLs) combine classical Description Logics with the semantics of Fuzzy Logics in order to represent and reason with vague knowledge. Most FDLs using truth values from the interval [0,1] have been shown to be undecidable in the presence of a negation constructor and general concept inclusions. One exception are those FDLs whose semantics is based on the infinitely valued Gödel t-norm (G). We extend previous decidability results for the FDL G-\(\mathcal{ALC}\) to deal with complex role inclusions, nominals, inverse roles, and qualified number restrictions. Our novel approach is based on a combination of the known crispification technique for finitely valued FDLs and an automata-based procedure for reasoning in G-\(\mathcal{ALC}\).

Keywords

Description Logic Domain Element Role Hierarchy Total Preorders Role Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press (2007)Google Scholar
  2. 2.
    Baader, F., Peñaloza, R.: On the undecidability of fuzzy description logics with GCIs and product t-norm. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp. 55–70. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia Logica 69(1), 5–40 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bobillo, F., Delgado, M., Gómez-Romero, J.: A crisp representation for fuzzy \(\cal SHOIN\) with fuzzy nominals and general concept inclusions. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 174–188. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bobillo, F., Delgado, M., Gómez-Romero, J.: Optimizing the crisp representation of the fuzzy description logic \(\cal \mathcal{SROIQ}\). In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 189–206. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Bobillo, F., Delgado, M., Gómez-Romero, J., Straccia, U.: Fuzzy description logics under Gödel semantics. Int. J. Approx. Reason. 50(3), 494–514 (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bobillo, F., Delgado, M., Gómez-Romero, J., Straccia, U.: Joining Gödel and Zadeh fuzzy logics in fuzzy description logics. Int. J. Uncertain. Fuzz. 20(4), 475–508 (2012)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bobillo, F., Straccia, U.: Fuzzy description logics with general t-norms and datatypes. Fuzzy Set. Syst. 160(23), 3382–3402 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bobillo, F., Straccia, U.: Reasoning with the finitely many-valued Łukasiewicz fuzzy description logic \(\mathcal{SROIQ}\). Inform. Sciences 181, 758–778 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bobillo, F., Straccia, U.: Finite fuzzy description logics and crisp representations. In: Bobillo, F., et al. (eds.) URSW 2008-2010/UniDL 2010. LNCS, vol. 7123, pp. 99–118. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Borgwardt, S.: Fuzzy DLs over finite lattices with nominals. In: Proc. DL 2014. CEUR-WS, vol. 1193, pp. 58–70 (2014)Google Scholar
  12. 12.
    Borgwardt, S., Distel, F., Peñaloza, R.: Decidable Gödel description logics without the finitely-valued model property. In: Proc. KR 2014, pp. 228–237. AAAI Press (2014)Google Scholar
  13. 13.
    Borgwardt, S., Distel, F., Peñaloza, R.: The limits of decidability in fuzzy description logics with general concept inclusions. Artif. Intell. 218, 23–55 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Borgwardt, S., Peñaloza, R.: The complexity of lattice-based fuzzy description logics 2(1), 1–19 (2013)Google Scholar
  15. 15.
    Borgwardt, S., Pen̂aloza, R.: Finite lattices do not make reasoning in \(\mathcal{ALCOI}\) harder. In: Bobillo, F., Carvalho, R.N., Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2011-2013. LNCS, vol. 8816, pp. 122–141. Springer, Heidelberg (2014)Google Scholar
  16. 16.
    Borgwardt, S., Peñaloza, R.: Infinitely valued Gödel semantics for expressive description logics. LTCS-Report 15-11, Chair for Automata Theory, TU Dresden, Germany (2015). see http://lat.inf.tu-dresden.de/research/reports.html.
  17. 17.
    Calvanese, D., Eiter, T., Ortiz, M.: Regular path queries in expressive description logics with nominals. In: Proc. IJCAI 2009, pp. 714–720. AAAI Press (2009)Google Scholar
  18. 18.
    Cerami, M., Straccia, U.: On the (un)decidability of fuzzy description logics under Łukasiewicz t-norm. Inform. Sciences 227, 1–21 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. 1st edn. Springer (2009)Google Scholar
  20. 20.
    Hájek, P.: Metamathematics of Fuzzy Logic (Trends in Logic). Springer (2001)Google Scholar
  21. 21.
    Hájek, P.: Making fuzzy description logic more general. Fuzzy Set. Syst. 154(1), 1–15 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible \(\mathcal{SROIQ}\). In: Proc. KR 2006, pp. 57–67. AAAI Press (2006)Google Scholar
  23. 23.
    Horrocks, I., Sattler, U.: Decidability of \(\mathcal{SHIQ}\) with complex role inclusion axioms 160(1–2), 79–104 (2004)Google Scholar
  24. 24.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive description logics 8(3), 239–263 (2000)Google Scholar
  25. 25.
    Kazakov, Y.: A polynomial translation from the two-variable guarded fragment with number restrictions to the guarded fragment. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 372–384. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Kazakov, Y.: \(\mathcal{RIQ}\) and \(\mathcal{SROIQ}\) are harder than \(\mathcal{SHOIQ}\). In: Proc. KR 2008, pp. 274–284. AAAI Press (2008)Google Scholar
  27. 27.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Trends in Logic, Studia Logica Library. Springer (2000)Google Scholar
  28. 28.
    Ortiz, M., Šimkus, M.: Reasoning and query answering in description logics. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 1–53. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  29. 29.
    Schild, K.: A correspondence theory for terminological logics: Preliminary report. In: Proc. IJCAI 1991, pp. 466–471. Morgan Kaufmann (1991)Google Scholar
  30. 30.
    Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artif. Intell. 48(1), 1–26 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Straccia, U.: Transforming fuzzy description logics into classical description logics. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 385–399. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  32. 32.
    Tobies, S.: The complexity of reasoning with cardinality restrictions and nominals in expressive description logics. J. Artif. Intell. Res. 12, 199–217 (2000)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge Representation. Ph.D. thesis, RWTH Aachen, Germany (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Theoretical Computer ScienceTU DresdenDresdenGermany
  2. 2.KRDB Research CentreFree University of Bozen-BolzanoBozen-BolzanoItaly

Personalised recommendations