International Symposium on Frontiers of Combining Systems

Frontiers of Combining Systems pp 275-290 | Cite as

A Rewriting Approach to the Combination of Data Structures with Bridging Theories

  • Paula Chocron
  • Pascal Fontaine
  • Christophe Ringeissen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9322)

Abstract

We introduce a combination method à la Nelson-Oppen to solve the satisfiability problem modulo a non-disjoint union of theories connected with bridging functions. The combination method is particularly useful to handle verification conditions involving functions defined over inductive data structures. We investigate the problem of determining the data structure theories for which this combination method is sound and complete. Our completeness proof is based on a rewriting approach where the bridging function is defined as a term rewrite system, and the data structure theory is given by a basic congruence relation. Our contribution is to introduce a class of data structure theories that are combinable with a disjoint target theory via an inductively defined bridging function. This class includes the theory of equality, the theory of absolutely free data structures, and all the theories in between. Hence, our non-disjoint combination method applies to many classical data structure theories admitting a rewrite-based satisfiability procedure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures. ACM Trans. Comput. Log. 10(1) (2009)Google Scholar
  2. 2.
    Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures. Inf. Comput. 183(2), 140–164 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Baader, F., Ghilardi, S.: Connecting many-sorted theories. J. Symb. Log. 72(2), 535–583 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press (1998)Google Scholar
  5. 5.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. Log. Comput. 4(3), 217–247 (1994)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for a theory of inductive data types. JSAT 3(1–2), 21–46 (2007)MathSciNetMATHGoogle Scholar
  7. 7.
    Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 39–57. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Chocron, P., Fontaine, P., Ringeissen, C.: A gentle non-disjoint combination of satisfiability procedures. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 122–136. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Chocron, P., Fontaine, P., Ringeissen, C.: A polite non-disjoint combination method: theories with bridging functions revisited. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp. 419–433. Springer, Heidelberg (2015)Google Scholar
  10. 10.
    Fontaine, P.: Combinations of theories for decidable fragments of first-order logic. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 263–278. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Ghilardi, S.: Model-theoretic methods in combined constraint satisfiability. Journal of Automated Reasoning 33(3-4), 221–249 (2004)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Jovanović, D., Barrett, C.: Polite theories revisited. In: Fermüller, C., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 402–416. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combinable extensions of abelian groups. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 51–66. Springer, Heidelberg (2009)Google Scholar
  14. 14.
    Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combining satisfiability procedures for unions of theories with a shared counting operator. Fundam. Inform. 105(1–2), 163–187 (2010)MathSciNetMATHGoogle Scholar
  15. 15.
    Ranise, S., Ringeissen, C., Zarba, C.G.: Combining data structures with nonstably infinite theories using many-sorted logic. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 48–64. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Sofronie-Stokkermans, V.: Locality results for certain extensions of theories with bridging functions. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 67–83. Springer, Heidelberg (2009)Google Scholar
  17. 17.
    Sofronie-Stokkermans, V.: Automated reasoning in extensions of theories of constructors with recursively defined functions and homomorphisms. In: Ball, T., Giesl, J., Hähnle, R., Nipkow, T. (eds.) Interaction Versus Automation: The Two Faces of Deduction. number 09411 in Dagstuhl Seminar Proceedings. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2010)Google Scholar
  18. 18.
    Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types with abstractions. In: Hermenegildo, M.V., Palsberg, J. (eds.) Principles of Programming Languages (POPL), pp. 199–210. ACM (2010)Google Scholar
  19. 19.
    Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of satisfiability procedures. Theoretical Comput. Sci. 290(1), 291–353 (2003)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Tinelli, C., Zarba, C.G.: Combining non-stably infinite theories. Journal of Automated Reasoning 34(3), 209–238 (2005)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Tran, D., Ringeissen, C., Ranise, S., Kirchner, H.: Combination of convex theories: Modularity, deduction completeness, and explanation. J. Symb. Comput. 45(2), 261–286 (2010)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Zhang, T., Sipma, H.B., Manna, Z.: Decision procedures for term algebras with integer constraints. Inf. Comput. 204(10), 1526–1574 (2006)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Paula Chocron
    • 1
  • Pascal Fontaine
    • 2
  • Christophe Ringeissen
    • 2
  1. 1.IIIA-CSIC, BellaterraCataloniaSpain
  2. 2.INRIA, Université de Lorraine and LORIANancyFrance

Personalised recommendations