International Symposium on Frontiers of Combining Systems

Frontiers of Combining Systems pp 220-236 | Cite as

Axiomatic Constraint Systems for Proof Search Modulo Theories

  • Damien Rouhling
  • Mahfuza Farooque
  • Stéphane Graham-Lengrand
  • Assia Mahboubi
  • Jean-Marc Notin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9322)

Abstract

Goal-directed proof search in first-order logic uses meta- variables to delay the choice of witnesses; substitutions for such variables are produced when closing proof-tree branches, using first-order unification or a theory-specific background reasoner. This paper investigates a generalisation of such mechanisms whereby theory-specific constraints are produced instead of substitutions. In order to design modular proof-search procedures over such mechanisms, we provide a sequent calculus with meta-variables, which manipulates such constraints abstractly. Proving soundness and completeness of the calculus leads to an axiomatisation that identifies the conditions under which abstract constraints can be generated and propagated in the same way unifiers usually are. We then extract from our abstract framework a component interface and a specification for concrete implementations of background reasoners.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baumgartner, P., Fuchs, A., Tinelli, C.: ME(LIA) – Model evolution with linear integer arithmetic constraints. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 258–273. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Baumgartner, P., Furbach, U., Petermann, U.: A unified approach to theory reasoning. Technical report, Inst. für Informatik, Univ. (1992)Google Scholar
  3. 3.
    Baumgartner, P., Tinelli, C.: Model evolution with equality modulo built-in theories. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 85–100. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Beckert, B.: Chapter 8: Rigid E-unification. In: Bibel, W., Schmitt, P.H. (eds.) Automated Deduction – A Basis for Applications. Foundations. Calculi and Methods, vol. I, pp. 265–289. Kluwer Academic Publishers (1998)Google Scholar
  5. 5.
    Beckert, B.: Equality and other theories. In: Handbook of Tableau Methods, pp. 197–254. Kluwer Academic Publishers (1999)Google Scholar
  6. 6.
    Dross, C., Conchon, S., Kanig, J., Paskevich, A.: Reasoning with triggers. In: Fontaine, P., Goel, A. (eds.) 10th Int. Work. on Satisfiability Modulo Theories, SMT 2012. EPiC Series, vol. 20, pp. 22–31. EasyChair, June 2012Google Scholar
  7. 7.
    Ganzinger, H., RueB, H., Shankar, N.: Modularity and refinement in inference systems. Technical Report SRI-CSL-04-02, SRI (2004)Google Scholar
  8. 8.
    Giese, M.: Proof search without backtracking using instance streams, position paper. In: Baumgartner, P., Zhang, H. (eds.) 3rd Int. Work. on First-Order Theorem Proving (FTP), pp. 227–228. Univ. of Koblenz, St. Andrews (2000)Google Scholar
  9. 9.
    Giese, M., Hähnle, R.: Tableaux + constraints. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796, pp. 37–42. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Graham-Lengrand, S.: Psyche: A proof-search engine based on sequent calculus with an LCF-Style architecture. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS, vol. 8123, pp. 149–156. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. of the ACM Press 53(6), 937–977 (2006)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Psyche: the Proof-Search factorY for Collaborative HEuristicsGoogle Scholar
  13. 13.
    Rouhling, D., Farooque, M., Graham-Lengrand, S., Notin, J.-M., Mahboubi, A.: Axiomatisation of constraint systems to specify a tableaux calculus modulo theories. Technical report, Laboratoire d’informatique de l’École Polytechnique - CNRS, Microsoft Research - INRIA Joint Centre, Parsifal & TypiCal - INRIA Saclay, France, December 2014Google Scholar
  14. 14.
    Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Saraswat, V.A., Rinard, M., Panangaden, P.: The semantic foundations of concurrent constraint programming. In: Wise, D.S. (ed.) 18th Annual ACM Symp. on Principles of Programming Languages (POPL 1991), pp. 333–352. ACM Press, January 1991Google Scholar
  16. 16.
    Stickel, M.E.: Automated deduction by theory resolution. J. of Automated Reasoning 1(4), 333–355 (1985)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Damien Rouhling
    • 1
  • Mahfuza Farooque
    • 2
  • Stéphane Graham-Lengrand
    • 2
    • 4
  • Assia Mahboubi
    • 3
  • Jean-Marc Notin
    • 2
  1. 1.École Normale Supérieure de LyonLyonFrance
  2. 2.CNRS - École PolytechniquePalaiseau CedexFrance
  3. 3.INRIA, Centre de Recherche en Informatique Saclay-Île de FranceParisFrance
  4. 4.SRI InternationalMenlo ParkUSA

Personalised recommendations