Advertisement

A Completion Method to Decide Reachability in Rewrite Systems

  • Guillaume Burel
  • Gilles Dowek
  • Ying Jiang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9322)

Abstract

The Knuth-Bendix method takes in argument a finite set of equations and rewrite rules and, when it succeeds, returns an algorithm to decide if a term is equivalent to another modulo these equations and rules. In this paper, we design a similar method that takes in argument a finite set of rewrite rules and, when it succeeds, returns an algorithm to decide not equivalence but reachability modulo these rules, that is if a term reduces to another. As an application, we give new proofs of the decidability of reachability in finite ground rewrite systems and in pushdown systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Burel, G., Dowek, G., Jiang, Y.: Automata, resolution and cut-elimination (manuscript) (2015)Google Scholar
  3. 3.
    Dauchet, M., Tison, S.: Decidability of confluence for ground term rewriting systems. In: Budach, L. (ed.) FCT 1985. LNCS, vol. 199, pp. 80–89. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  4. 4.
    Dershowitz, N.: Completion and its applications. In: Aït-Kaci, H., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures, vol. 2, chapter 2, pp. 31–86. Academic Press (1989)Google Scholar
  5. 5.
    Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Communications of the ACM 22(8), 465–476 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dowek, G.: What is a theory? In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 50–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Dowek, G.: Confluence as a cut elimination property. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 2–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Dowek, G.: Polarized resolution modulo. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 182–196. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Hirokawa, N.: Commutation and signature extension. In: Tiwari, A., Aoto, T. (eds.) International Workshop on Confluence (2015)Google Scholar
  10. 10.
    Huet, G.: Confluent reductions: abstract properties and applications to term rewriting systems. Journal of the Association of Computing Machinery 27(4), 797–821 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jouannaud, J.-P., Kirchner, H.: Completion of a set of rules modulo a set of equations. SIAM Journal of Computing 15(4), 1155–1194 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kamin, S., Lévy, J.-J.: Attempts for generalizing the recursive path ordering (unpublished manuscript)Google Scholar
  13. 13.
    Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Computational Problems in Abstract Algebra, pp. 263–297, Pergamon (1970)Google Scholar
  14. 14.
    Lankford, D.S.: Canonical inference. Technical report, Louisiana Tech. University (1975)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Ensiie, 1 square de la RésistanceÉvryFrance
  2. 2.InriaParis Cedex 13France
  3. 3.State Key Laboratory of Computer Science, Institute of SoftwareChinese Academy of SciencesBeijingChina

Personalised recommendations