Advertisement

Decidability of Verification of Safety Properties of Spatial Families of Linear Hybrid Automata

  • Werner Damm
  • Matthias Horbach
  • Viorica Sofronie-Stokkermans
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9322)

Abstract

We consider systems composed of an unbounded number of uniformly designed linear hybrid automata, whose dynamic behavior is determined by their relation to neighboring systems. We present a class of such systems and a class of safety properties whose verification can be reduced to the verification of (small) families of “neighboring” systems of bounded size, and identify situations in which such verification problems are decidable, resp. fixed parameter tractable. We illustrate the approach with an example from coordinated vehicle guidance.

Keywords

Linear Inequality Mode Switch Safety Property Hybrid Automaton Ground Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Haziza, F., Holík, L.: All for the price of few. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 476–495. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Ho, P.: Automatic symbolic verification of embedded systems. IEEE Trans. Software Eng. 22(3), 181–201 (1996)CrossRefGoogle Scholar
  3. 3.
    Damm, W., Horbach, M., Sofronie-Stokkermans, V.: Decidability of verification of safety properties of spatial families of linear hybrid automata. Tech. Rep. 111, SFB/TR 14 AVACS (2014). http://www.avacs.org
  4. 4.
    Damm, W., Ihlemann, C., Sofronie-Stokkermans, V.: PTIME parametric verification of safety properties for reasonable linear hybrid automata. Mathematics in Computer Science 5(4), 469–497 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Damm, W., Peter, H., Rakow, J., Westphal, B.: Can we build it: formal synthesis of control strategies for cooperative driver assistance systems. Mathematical Structures in Computer Science 23(4), 676–725 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Emerson, E.A., Srinivasan, J.: A decidable temporal logic to reason about many processes. In: Proc. PODS 1990, pp. 233–246. ACM (1990)Google Scholar
  7. 7.
    Faber, J., Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: Automatic verification of parametric specifications with complex topologies. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 152–167. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Frehse, G., Jha, S.K., Krogh, B.H.: A counterexample-guided approach to parameter synthesis for linear hybrid automata. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 187–200. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Frese, C.: A comparison of algorithms for planning cooperative motions of cognitive automobiles. In: Proc. 2010 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory. No. IES-2010-06 in Karlsruher Schriften zur Anthropomatik, vol. 7, pp. 75–90. KIT Scientific Publishing (2010)Google Scholar
  10. 10.
    Frese, C., Beyerer, J.: Planning cooperative motions of cognitive automobiles using tree search algorithms. In: Dillmann, R., Beyerer, J., Hanebeck, U.D., Schultz, T. (eds.) KI 2010. LNCS, vol. 6359, pp. 91–98. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Fribourg, L., Kühne, U.: Parametric verification and test coverage for hybrid automata using the inverse method. Int. J. Found. Comput. Sci. 24(2), 233–250 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for proving safety of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Hungar, H., Grumberg, O., Damm, W.: What if model checking must be truly symbolic. In: Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987, pp. 1–20. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  14. 14.
    Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verification. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 265–281. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Ihlemann, C., Sofronie-Stokkermans, V.: System description: H-PILoT. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 131–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Ihlemann, C., Sofronie-Stokkermans, V.: On hierarchical reasoning in combinations of theories. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 30–45. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Jacobs, S., Bloem, R.: Parameterized synthesis. Logical Methods in CS 10(1) (2014)Google Scholar
  18. 18.
    Jacobs, S., Kuncak, V.: Towards complete reasoning about axiomatic specifications. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 278–293. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Johnson, T.T., Mitra, S.: Parametrized verification of distributed cyber-physical systems: An aircraft landing protocol case study. In: Proc. CPS 2012, pp. 161–170. IEEE (2012)Google Scholar
  20. 20.
    Johnson, T.T., Mitra, S.: A small model theorem for rectangular hybrid automata networks. In: Giese, H., Rosu, G. (eds.) FORTE/FMOODS 2012. LNCS, vol. 7273, pp. 18–34. Springer, Heidelberg (2012)Google Scholar
  21. 21.
    Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 645–659. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Khachian, L.: A polynomial time algorithm for linear programming. Soviet Math. Dokl. 20, 191–194 (1979)Google Scholar
  23. 23.
    Koubarakis, M.: Tractable disjunctions of linear constraints: basic results and applications to temporal reasoning. Theo. Comp. Sci. 266(1–2), 311–339 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    McPeak, S., Necula, G.C.: Data structure specifications via local equality axioms. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 476–490. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Mickelin, O., Ozay, N., Murray, R.M.: Synthesis of correct-by-construction control protocols for hybrid systems using partial state information. In: Proc. ACC 2014, pp. 2305–2311. IEEE (2014)Google Scholar
  26. 26.
    de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Nebel, B., Bürckert, H.J.: Reasoning about temporal relations: A maximal tractable subclass of Allen’s interval algebra. J. of the ACM 42(1), 43–66 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning 41(2), 143–189 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Platzer, A.: Quantified differential dynamic logic for distributed hybrid systems. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 469–483. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. 30.
    Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 219–234. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Sofronie-Stokkermans, V.: Hierarchical reasoning for the verification of parametric systems. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 171–187. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  32. 32.
    Sofronie-Stokkermans, V.: Hierarchical reasoning and model generation for the verification of parametric hybrid systems. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 360–376. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  33. 33.
    Sontag, E.: Real addition and the polynomial hierarchy. Inf. Proc. Letters 20(3), 115–120 (1985)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Werner Damm
    • 1
  • Matthias Horbach
    • 2
  • Viorica Sofronie-Stokkermans
    • 2
  1. 1.Carl von Ossietzky UniversityOldenburgGermany
  2. 2.University Koblenz and Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations