Updating Genomic Data of Lepidoptera

  • Carmen Pozo
  • Blanca Prado
  • América Nitxin Castañeda-Sortibrán
Chapter
Part of the Entomology in Focus book series (ENFO, volume 3)

Abstract

Among the insects, lepidopterans form the second most diverse group, with over 155,000 described species. Research on Lepidoptera has a long tradition in several fields, including taxonomy, phylogeny, ecology, population genetics, evolutionary biology, speciation, physiology, development and gene regulation, host–plant and insect–parasite interactions, and, in recent decades, genomics. These studies and genomic resources for them are widely distributed and often widespread in various databases. In this chapter, we analyze the state of the art for genomic resources for Lepidoptera in GenBank for the following genes: elongation factor-1α, wingless, cytochrome c oxidase I, ribosomal DNA and RNA, and in general a number of other protein and enzyme entries; complete mitochondrial genomes; complete nuclear genomes; and published work on barcode methodology. This information will help researchers find gaps in the available resources and direct research efforts in these areas.

Abbreviations

cDNA

Complementary DNA

BAC

Bacterial artificial chromosome

CDS

Coding sequences

COI, COII, COIII

Cytochrome oxidase subunits I, II, III

cyt b

Cytochrome b

dsx

Doublesex

EF

Elongation factor-1α

EST

Expressed sequence tag

mtDNA

Mitochondrial DNA

MT-ND4L

Mitochondrially encoded NADH dehydrogenase 4L

MT-ND1

Mitochondrially encoded NADH dehydrogenase subunit 1

ncDNA-18S rRNA

Nuclear DNA of the small subunit ribosomal RNA

ncDNA-28S rRNA

Nuclear DNA of the large subunit ribosomal RNA

NCBI

National Center for Biotechnology Information

rDNA

Ribosomal DNA

rRNA

Ribosomal RNA

tRNA-Leu

tRNA-leucine

tRNA-Val

tRNA-valine

Wg

Wingless

WGS

Whole-genome shotgun

Notes

Acknowledgments

We thank the reviewers of this chapter, M. R. Goldsmith, A. A. Tolulope, and R. Chandrasekar, who helped us to improve it. In particular, M. R. Goldsmith helped us on the incorporation of information in a relevant way.

We would like to thank Jovana Jasso Martínez, Karen Fernanda Real Salazar, Ana Karina Cruz Galindo, and Azalea Guadalupe Acosta Carreón, who have contributed to this work.

This work was supported by El Colegio de la Frontera Sur and Facultad de Ciencias, Universidad Nacional Autónoma de México.

References

  1. 1.
    Roe AD, Weller SJ, Baixeras J, Brown J, Cummings MP, Davis DR et al (2010) Evolutionary framework for Lepidoptera model systems. In: Goldsmith M, Marec F (eds) Genetics and molecular biology of Lepidoptera. CRC Press, Boca Raton, pp 1–24Google Scholar
  2. 2.
    Scoble MJ (1992) The Lepidoptera: form, function, and diversity. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767PubMedCrossRefGoogle Scholar
  4. 4.
    Nieukerken EJV, Kaila L, Kitching IJ, Kristensen NP, Lees DC, Minet J et al (2011) Order Lepidoptera. In: Zhang Z-Q (ed) Animal biodiversity: an introduction to higher-level classification and taxonomic richness. Zootaxa 3148:212–221, Aukland, New ZealandGoogle Scholar
  5. 5.
    Rubin GM, Lewis EB (2000) A brief history of Drosophila’s contributions to genome research. Science 287(5461):2216–2218PubMedCrossRefGoogle Scholar
  6. 6.
    Willis JH, Wilkins AS, Goldsmith MR (1995) A brief history of Lepidoptera as model systems. In: Goldsmith MR, Wilkins AS (eds) Molecular model systems in the Lepidoptera. Cambridge University Press, Cambridge, pp 1–20CrossRefGoogle Scholar
  7. 7.
    Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2012) GenBank. Nucleic Acids Res:1–7. doi:10.1093/nar/gks1195
  8. 8.
    Wilson JJ (2010) Assessing the value of DNA barcodes and other priority gene regions for molecular phylogenetics of Lepidoptera. PLoS One 5(5):e10525. doi:10.1371/journal.pone.0010525 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hoy MA (2003) Insect molecular genetics. An introduction to principles and applications. Academic, BostonGoogle Scholar
  10. 10.
    Maroni G (1993) An atlas of Drosophila genes. Oxford University Press, OxfordGoogle Scholar
  11. 11.
    Lin CP, Danforth BN (2004) How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets. Mol Phylogenet Evol 30:686–702PubMedCrossRefGoogle Scholar
  12. 12.
    Kim M, Wan X, Kim MJ, Jeong HC, Ahn N, Kim K et al (2010) Phylogenetic relationships of true butterflies (Lepidoptera: Papilionoidea) inferred from COI, 16S rRNA and EF-1α sequences. Mol Cells 30:409–425PubMedCrossRefGoogle Scholar
  13. 13.
    Cho S, Mitchell A, Regier JC, Mitter C, Poole RW, Friedlander TP et al (1995) A highly conserved nuclear gene for low-level phylogenetics: Elongation factor-1α recovers morphology-based tree for heliothine moths. Mol Biol Evol 12:650–656PubMedGoogle Scholar
  14. 14.
    Friedlander TP, Horst KR, Regier JC, Mitter C, Peigler RS, Fang QQ (1998) Two nuclear genes yield concordant relationship within Attacini (Lepidoptera: Saturniidae). Mol Phylogenet Evol 9:131–140PubMedCrossRefGoogle Scholar
  15. 15.
    Mitchell A, Cho S, Regier JC, Mitter C, Poole RW, Matthews M (1997) Phylogenetic utility of elongation factor-1 alpha in noctuidae (Insecta: Lepidoptera): the limits of synonymous substitution. Mol Biol Evol 14(4):381–390PubMedCrossRefGoogle Scholar
  16. 16.
    Mitchell A, Mitter C, Regier JC (2000) More taxa or more characters revisited: combining data from nuclear protein-encoding genes for phylogenetic analysis of Noctuoidea (Insecta: Lepidoptera). Syst Biol 49:202–224PubMedCrossRefGoogle Scholar
  17. 17.
    Moulton JK (2000) Molecular sequence data resolves basal divergences within Simuliidae (Diptera). Syst Entomol 25:95–113CrossRefGoogle Scholar
  18. 18.
    Regier JC, Mitter C, Peigler RS, Friedlander TP (2000) Phylogenetic relationship in Lasiocampidae (Lepidoptera): initial evidence from elongation factor-1 alpha sequences. Insect Syst Evol 31:179–186CrossRefGoogle Scholar
  19. 19.
    Caterino MS, Cho S, Sperling FAH (2000) The current state of insect molecular systematics: a thriving Tower of Babel. Annu Rev Entomol 45:1–54PubMedCrossRefGoogle Scholar
  20. 20.
    Wahlberg N, Weingartner E, Nylin S (2003) Towards a better understanding of the higher systematics of Nymphalidae (Lepidoptera: Papilionoidea). Mol Phylogenet Evol 28:473–484. doi:10.1016/S1055-7903(03)00052-6 PubMedCrossRefGoogle Scholar
  21. 21.
    Carroll SB, Gates J, Keys DN, Paddock SW, Panganiban GE, Selegue JE et al (1994) Pattern formation and eyespot determination in butterfly wings. Science 265(5168):109–114PubMedCrossRefGoogle Scholar
  22. 22.
    Campbell DL, Brower AV, Pierce NE (2000) Molecular evolution of the wingless gene and its implications for the phylogenetic placement of the butterfly family Riodinidae (Lepidoptera: Papilionoidea). Mol Biol Evol 17(5):684–696PubMedCrossRefGoogle Scholar
  23. 23.
    Beldade P, Brakefield PM (2002) The genetics and evo-devo of butterfly wing patterns. Nat Genet 3:442–452Google Scholar
  24. 24.
    Werner T, Koshikawa S, Williams TM, Carroll SB (2010) Generation of a novel wing colour pattern by the Wingless morphogen. Nature 464:1143–1148PubMedCrossRefGoogle Scholar
  25. 25.
    Kunte K, Zhang W, Tenger-Trolander A, Palmer DH, Martin A, Reed RD et al (2014) Doublesex is a mimicry supergene. Nature 507(7491):229–232PubMedCrossRefGoogle Scholar
  26. 26.
    Brower AVZ, DeSalle R (1998) Patterns of mitochondrial versus nuclear DNA sequence divergence among nymphalid butterflies: the utility of wingless as a source of characters for phylogenetic inference. Insect Mol Biol 7:1–10CrossRefGoogle Scholar
  27. 27.
    Warren AD, Ogawa JR, Brower AVZ (2008) Phylogenetic relationships of subfamilies and circumscription of tribes in the family Hesperiidae (Lepidoptera: Hesperioidea). Cladistics 24:642–676CrossRefGoogle Scholar
  28. 28.
    Snäll N, Tammaru T, Wahlberg N, Viidalepp J, Ruohomaki K, Savontaus ML et al (2007) Phylogenetic relationships of the tribe Operophterini (Lepidoptera, Geometridae): a case study of the evolution of female flightlessness. Biol J Linn Soc 92(2):241–252CrossRefGoogle Scholar
  29. 29.
    Fedic R, Zurovec M, Sehnal F (2002) The silk of Lepidoptera. J Insect Biotechnol Sericol 71:1–15Google Scholar
  30. 30.
    Goldsmith MR, Shimada T, Abe H (2004) The genetics and genomics of the silkworm, Bombyx mori. Annu Rev Entomol 50:71–100CrossRefGoogle Scholar
  31. 31.
    Gong ZJ, Zhou WW, Yu HZ, Mao CG, Zhang CX, Cheng JA et al (2009) Cloning, expression and functional analysis of a general odorant-binding protein 2 gene of the rice striped stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae). Insect Mol Biol 18(3):405–417PubMedCrossRefGoogle Scholar
  32. 32.
    Feng L, Prestwich GD (1997) Expression and characterization of a lepidopteran general odorant binding protein. Insect Biochem Mol Biol 27(5):405–412PubMedCrossRefGoogle Scholar
  33. 33.
    Martin JP, Lei H, Riffell JA, Hildebrand JG (2013) Synchronous firing of antennal-lobe projection neurons encodes the behaviorally effective ratio of sex-pheromone components in male Manduca sexta. J Comp Physiol A 199:963–979CrossRefGoogle Scholar
  34. 34.
    Vogt RG, Große-Wilde E, Zhou J-J (2015) The Lepidoptera odorant binding protein gene family: gene gain and loss within the GOBP/PBP complex of moths and butterflies. Insect Biochem Mol Biol. 62:142–153 http://dx.doi.org/10.1016/j.ibmb.2015.03.003
  35. 35.
    Mutanen M, Wahlberg N, Kalla L (2010) Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proc R Soc B:277(1695):2839–2848. doi:10.1098/rspb.2010.0392
  36. 36.
    Regier JC et al (2009) Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study. BMC Evol Biol 9:280. doi:10.1186/1471-2148-9-280 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Regier JC et al (2013) A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLoS One 8(3):e58568. doi:10.1371/journal.pone.0058568 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Xia Q, Guo Y, Zhang Z, Li D, Xuan Z, Li Z et al (2009) Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 326(5951):433–436PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hills DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66(4):411–453CrossRefGoogle Scholar
  40. 40.
    Pashley DP, Ke LD (1992) Sequence evolution in mitochondrial ribosomal and ND-1 genes in lepidoptera: implications for phylogenetic analyses. Mol Biol Evol 9(6):1061–1075PubMedGoogle Scholar
  41. 41.
    Wiegmann BM, Mitter C, Regier JC, Friedlander TP, Wagner DM, Nielsen ES (2000) Nuclear genes resolve Mesozoic-aged divergences in the insect order Lepidoptera. Mol Phylogenet Evol 15(2):242–259PubMedCrossRefGoogle Scholar
  42. 42.
    Zimmermann M, Wahlberg N, Descimon H (2000) Phylogeny of Euphydryas checkerspot butterflies (Lepidoptera: Nymphalidae) based on mitochondrial DNA sequence data. Ann Entomol Soc Am 93(3):347–355CrossRefGoogle Scholar
  43. 43.
    von Reumont BJ, Struwe J-F, Schwarzer J, Misof B (2011) Phylogeography of the burnet moth Zygaena transalpina complex: molecular and morphometric differentiation suggests glacial refugia in Southern France, Western France and micro-refugia within the Alps. J Zool Syst Evol Res 50(1):38–50. doi:10.1111/j.1439-0469.2011.00637.x CrossRefGoogle Scholar
  44. 44.
    Niehuis O, Yen SH, Naumann CM, Misof B (2006) Higher phylogeny of zygaenid moths (Insecta: Lepidoptera) inferred from nuclear and mitochondrial sequence data and the evolution of larval cuticular cavities for chemical defence. Mol Phylogenet Evol 39:812–829PubMedCrossRefGoogle Scholar
  45. 45.
    Capaldi RA, Malatesta F, Darley-Usmar VM (1983) Structure of cytochrome c oxidase. BBA Bioenergetics 726(2):135–148PubMedGoogle Scholar
  46. 46.
    Michel H (1998) The mechanism of proton pumping by cytochrome c oxidase. Proc Natl Acad Sci U S A 95:12819–12824PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Lunt DH, Zhang DX, Szymura JM, Hewitt GM (1996) The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetics studies. Insect Mol Biol 5(3):153–165PubMedCrossRefGoogle Scholar
  48. 48.
    Caterino MS, Sperling FAH (1999) Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes. Mol Phylogenet Evol 11(1):122–137PubMedCrossRefGoogle Scholar
  49. 49.
    Brower AVZ (1994) Phylogeny of Heliconius butterflies inferred from mitochondrial DNA sequences (Lepidoptera: Nymphalidae). Mol Phylogenet Evol 3(2):159–174CrossRefGoogle Scholar
  50. 50.
    Zakharov E, Caterino MS, Sperling FAH (2004) Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Syst Biol 53(2):193–215PubMedCrossRefGoogle Scholar
  51. 51.
    Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. P Roy Soc B Biol Sci 270:313–321CrossRefGoogle Scholar
  52. 52.
    Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. P Roy Soc B Biol Sci 270:S596–S599CrossRefGoogle Scholar
  53. 53.
    Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci U S A 101:14812–14817PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Janzen DH, Hajibabaei M, Burns J, Hallwachs W, Remigio E, Hebert PDN (2005) Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Philos Trans R Soc Lond B Biol Sci 2005 Oct 29; 360(1462):1835–1845Google Scholar
  55. 55.
    Janzen DH, Hallwachs W, Blandin P, Burns JM, Cadiou JM, Chacon I et al (2009) Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity. Mol Ecol Resour 9:1–26PubMedCrossRefGoogle Scholar
  56. 56.
    Burns JM, Janzen DH, Hajibabaei M, Hallwachs W, Hebert PDN (2007) DNA barcodes of closely related (but morphologically and ecologically distinct) species of skipper butterflies (Hesperiidae) can differ by only one to three nucleotides. J Lepid Soc 61:138–153Google Scholar
  57. 57.
    Burns JM, Janzen DH, Hajibabaei M, Hallwachs W, Hebert PDN (2008) DNA barcodes and cryptic species of skipper butterflies in the genus Perichares in Area de Conservacion Guanacaste, Costa Rica. Proc Natl Acad Sci U S A 105:6350–6355PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Prado B, Pozo C, Valdez-Moreno M, Hebert PDN (2011) Beyond the colours: discovering hidden diversity in the nymphalidae of the Yucatan peninsula in Mexico through DNA barcoding. PLoS One 6(11):e27776. doi:10.1371/journal.pone.0027776 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Beltran M, Jiggins CD, Bull V, Linares M, Mallet J, McMillan WO et al (2002) Phylogenetic discordance at the species boundary: comparative gene genealogies among rapidly radiating Heliconius butterflies. Mol Biol Evol 19(12):2176–2190PubMedCrossRefGoogle Scholar
  60. 60.
    Hu J, Zhang D, Hao J, Huang D, Cameron S, Zhu C (2010) The complete mithocondrial genome of the yellow coaster, Craea issoria (Lepidoptera: Nymphalidae: Heliconiinae: Acraeini): sequence, gene organization and a unique tRNA translocation event. Mol Biol Rep 37:3431–3438PubMedCrossRefGoogle Scholar
  61. 61.
    Cameron SL (2014) Insect mitocondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol 59:95–117PubMedCrossRefGoogle Scholar
  62. 62.
    Wu L, Lin L, Lees DC, Hsu Y (2014) Mitogenomic sequences effectively recover relationships within brush-footed butterflies (Lepidptera: Nymphalidae). BMC Genomics 15:468PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ackery PR, Vane-Wright RI (1984) Milkweed butterflies: their cladistics and biology, being an account of the natural history of the Danainae, a subfamily of the Lepidoptera, Nymphalidae. British Museum, LondonGoogle Scholar
  64. 64.
    Ehrlich PR, Hanski I (2004) On the wings of checkerspots: a model system for population biology. Oxford University Press, New YorkGoogle Scholar
  65. 65.
    Sheppard PM, Turner J, Brown K, Benson W, Singer M (1985) Genetics and the evolution of Muellerian mimicry in Heliconius butterflies. Philos Trans R Soc Lond B Biol Sci 308:433–610CrossRefGoogle Scholar
  66. 66.
    Pollard E, Yates TJ (1993) Monitoring butterflies for ecology and conservation. Chapman and Hall, LondonGoogle Scholar
  67. 67.
    Li W, Zhang X, Fan Z, Yue B, Huang F, King E et al (2011) Structural characteristics and phylogenetic analysis of the mitochondrial genome of the sugarcane borer, Diatraea saccharalis (Lepidoptera: Crambidae). DNA Cell Biol 30(1):3–8PubMedCrossRefGoogle Scholar
  68. 68.
    Saura A, von Schoultz B, Saura AO, Brown KS Jr (2013) Chromosome evolution in Neotropical butterflies. Hereditas 150:26–37PubMedCrossRefGoogle Scholar
  69. 69.
    Robinson R (1971) Lepidoptera genetics. Pergamon, OxfordGoogle Scholar
  70. 70.
    Gregory TR, Hebert PDN (2003) Genome size variation in lepidopteran insects. Can J Zool 81:1399–1405CrossRefGoogle Scholar
  71. 71.
    Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG et al (2000) The genome sequence of Drosophila melanogaster. Science 287(5461):2185–2195PubMedCrossRefGoogle Scholar
  72. 72.
    Celniker SE, Rubin GM (2003) The Drosophila melanogaster genome. Annu Rev Genom Hum G 4:89–117CrossRefGoogle Scholar
  73. 73.
    Beldade P, McMillan WO, Papanicoloau A (2008) Butterfly genomics eclosing. Heredity 100:150–157PubMedCrossRefGoogle Scholar
  74. 74.
    Goldsmith M, Marec F (2010) Genetics and molecular biology of Lepidoptera. CRC Press, Boca RatonGoogle Scholar
  75. 75.
    Bisch-Knaden S, Daimon T, Shimada T, Hansson BS, Sachse S (2014) Anatomical and functional analysis of domestication effects on the olfactory system of the silkmoth Bombyx mori. P Roy Soc B Biol Sci 281(1774):20132582CrossRefGoogle Scholar
  76. 76.
    Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H et al (2004) The genome sequence of silkworm, Bombyx mori. DNA Res 11(1):27–35PubMedCrossRefGoogle Scholar
  77. 77.
    Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B et al (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306(5703):1937–1940PubMedCrossRefGoogle Scholar
  78. 78.
    The International Silkworm Genome Consortium (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 38(12):1036–1045CrossRefGoogle Scholar
  79. 79.
    Mita K, Morimyo M, Okano K, Koike Y, Nohata J, Kawasaki H et al (2003) The construction of an EST database for Bombyx mori and its application. Proc Natl Acad Sci U S A 100(24):14121–14126PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Suetsugu Y, Futahashi R, Kanamori H, Kadono-Okuda K, Sasanuma S, Narukawa J et al (2013) Large scale full-length cDNA sequencing reveals a unique genomic landscape in a lepidopteran model insect, Bombyx mori. G3 (Bethesda) 3(9):1481–1492CrossRefGoogle Scholar
  81. 81.
    Miller NG, Wassenaar LI, Hobson KA, Norris DR (2012) Migratory connectivity of the monarch butterfly (Danaus plexippus): patterns of spring re-colonization in eastern North America. PLoS One 7(3):e31891PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Zhan S, Merlin C, Boore JL, Reppert SM (2011) The monarch butterfly genome yields insights into long-distance migration. Cell 147(5):1171–1185PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Zhan S, Reppert SM (2013) MonarchBase: the monarch butterfly genome database. Nucleic Acids Res 41(D1):D758–D763PubMedCrossRefGoogle Scholar
  84. 84.
    Zhan S, Zhang W, Niitepõld K, Hsu J, Haeger JF, Zalucki MP et al (2014) The genetics of monarch butterfly migration and warning colouration. Nature 514(7522):317–321PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Martin SH, Dasmahapatra KK, Nadeau NJ, Salazar C, Walters JR, Simpson F et al (2013) Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res 23(11):1817–1828PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Cuthill JH, Charleston M (2012) Phylogenetic Codivergence supports coevolution of mimetic Heliconius butterflies. PLoS One 7(5):e36464. doi:10.1371/journal.pone.0036464 PubMedCrossRefGoogle Scholar
  87. 87.
    Heliconius Genome Consortium (2012) Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487(7405):94–98Google Scholar
  88. 88.
    Kronforst MR, Papa R (2015) The functional basis of wing patterning in Heliconius butterflies: the molecules behind mimicry. Genetics 200:1–19PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Sarfraz M, Dosdall LM, Keddie BA (2006) Diamondback moth–host plant interactions: implications for pest management. Crop Prot 25(7):625–639CrossRefGoogle Scholar
  90. 90.
    De Bortoli SA, Polanczyk RA, Vacari AM, De Bortoli CP, Duarte RT (2013) Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae): tactics for integrated pest management in Brassicaceae. In: Soloneski S (ed) Weed and pest control–conventional and new challenges. InTech. doi:5772/54110Google Scholar
  91. 91.
    You M, Yue Z, He W, Yang X, Yang G, Xie M et al (2013) A heterozygous moth genome provides insights into herbivory and detoxification. Nat Genet 45(2):220–225PubMedCrossRefGoogle Scholar
  92. 92.
    Jouraku A, Yamamoto K, Kuwazaki S, Urio M, Suetsugu Y, Narukawa J et al (2013) KONAGAbase: a genomic and transcriptomic database for the diamondback moth, Plutella xylostella. BMC Genomics 14(1):464PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Su JW, Xuan WJ, Sheng CF, Ge F (2003) Biology of overwintering larvae of the Asiatic rice borer, Chilo suppressalis, in paddy fields of Northeast China. Entomol Knowl 4:007Google Scholar
  94. 94.
    Khan ZR, Litsinger JA, Barrion AT, Villanueva FFD (1991) World bibliography of Rice Stem Borers 1794–1990. International Rice Research Institute, MakatiGoogle Scholar
  95. 95.
    Yin C, Liu Y, Liu J, Xiao H, Huang S, Lin Y et al (2014) ChiloDB: a genomic and transcriptome database for an important rice insect pest Chilo suppressalis. Database:1–7. Published online 2005 Sep 14. doi:10.1098/rstb.2005.1715
  96. 96.
    Hanski I (2011) Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly. Proc Natl Acad Sci U S A 108:14397–14404. doi:10.1073/pnas.1110020108 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I et al (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17(7):1636–1647PubMedCrossRefGoogle Scholar
  98. 98.
    Ahola V, Lehtonen R, Somervuo P, Salmela L, Koskinen P, Rastas P et al (2014) The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nat Commun. 5:4737 doi:10.1038/ncomms5737
  99. 99.
    Somervuo P, Kvist J, Ikonen S, Auvinen P, Paulin L, Koskinen P et al (2014) Transcriptome analysis reveals signature of adaptation to landscape fragmentation. PLoS One 9(7):e101467PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Valencia Cataño SJ, Rodríguez Chalarca J, Mesa Cobo NC (2014) Effect of varieties of cotton GM on Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) larvae. Acta Agron 63:63–70CrossRefGoogle Scholar
  101. 101.
    Casmuz A, Juárez ML, Socías MG, Murúa MG, Prieto S, Medina S et al (2010) Revisión de los hospederos del gusano cogollero del maíz, Spodoptera frugiperda (Lepidoptera: Noctuidae). Revista de la Sociedad Entomológica Argentina 69:209–231Google Scholar
  102. 102.
    Kakumani PK, Malhotra P, Mukherjee SK, Bhatnagar RK (2014) A draft genome assembly of the army worm, Spodoptera frugiperda. Genomics 104(2):134–143PubMedCrossRefGoogle Scholar
  103. 103.
    Brower JVZ (1958) Experimental studies of mimicry in some North American butterflies: Part II. Battus philenor and Papilio troilus, P. polyxenes and P. glaucus. Evolution 12:123–136CrossRefGoogle Scholar
  104. 104.
    Clarke CA, Sheppard PM (1962) The genetics of the mimetic butterfly Papilio glaucus. Ecology 43:159–161CrossRefGoogle Scholar
  105. 105.
    Cong Q, Borek D, Otwinowski Z, Grishin NV (2015) Tiger swallowtail genome reveals mechanisms for speciation and caterpillar chemical defense. Cell Rep 10:910–919. doi:10.1016/j.celrep.2015.01.026 CrossRefGoogle Scholar
  106. 106.
    Nishikawa H, Iijima T, Kajitani R, Yamaguchi J, Ando T, Suzuki Y et al (2015) A genetic mechanism for female-limited Batesian mimicry in Papilio butterfly. Nat Genet 47(4):405–411PubMedCrossRefGoogle Scholar
  107. 107.
    He Y, Cao X, Li K, Hu Y, Chen YR, Blissard G et al (2015) A genome-wide analysis of antimicrobial effector genes and their transcription patterns in Manduca sexta. Insect Biochem Mol Biol 62:23–37. doi:10.1016/j.ibmb.2015.01.015 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Cao X, He Y, Hu Y, Wang Y, Chen YR, Bryant B et al (2015) The immune signaling pathways of Manduca sexta. Insect Biochem Mol Biol 62:64–74. doi:10.1016/j.ibmb.2015.03.006 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Zhang X, He Y, Cao X, Gunaratna RT, Chen YR, Blissard G et al (2015) Phylogenetic analysis and expression profiling of the pattern recognition receptors: insights into molecular recognition of invading pathogens in Manduca sexta. Insect Biochem Mol Biol 62:38–50. doi:10.1016/j.ibmb.2015.02.001 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Tobler A, Nijhout HF (2010) Developmental constraints on the evolution of wing-body allometry in Manduca sexta. Evol Dev 12(6):592–600PubMedCrossRefGoogle Scholar
  111. 111.
    Thaler JS, Contreras H, Davidowitz G (2014) Effects of predation risk and plant resistance on Manduca sexta caterpillar feeding behaviour and physiology. Ecol Entomol 39(2):210–216CrossRefGoogle Scholar
  112. 112.
    Zhang S, Cao X, He Y, Hartson S, Jiang H (2014) Semi-quantitative analysis of changes in the plasma peptidome of Manduca sexta larvae and their correlation with the transcriptome variations upon immune challenge. Insect Biochem Mol Biol 47:46–54PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Ohshima Y, Suzuki Y (1977) Cloning of the silk fibroin gene and its flanking sequences. Proc Natl Acad Sci U S A 74(12):5363–5367PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Lecanidou R, Eickbush TH, Rodakis GC, Kafatos FC (1983) Novel B family sequence from an early chorion cDNA library of Bombyx mori. Proc Natl Acad Sci U S A 80(7):1955–1959PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Carmen Pozo
    • 1
  • Blanca Prado
    • 1
  • América Nitxin Castañeda-Sortibrán
    • 2
  1. 1.Departamento de Conservación de la BiodiversidadEl Colegio de la Frontera SurChetumalMéxico
  2. 2.Departamento de Biología Celular, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico

Personalised recommendations