Advertisement

Antimicrobial Peptides in Host Defense: Functions Beyond Antimicrobial Activity

  • Kim Alan BrogdenEmail author
  • Amber M. Bates
  • Carol L. Fischer
Chapter
Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)

Abstract

Antimicrobial peptides are well known for their important roles in host defense by enhancing the barrier function and limiting microbial populations of the skin and mucosa. However, many of these peptides are now known to have additional roles assisting innate and adaptive immune functions. To facilitate innate immunity, antimicrobial peptides activate complement, chemoattract cells (e.g., monocytes, macrophages, T cells, neutrophils, immature dendritic cells, and mast cells), enhance phagocytosis, and modulate the production of chemokines and proinflammatory cytokines in other cells. At local sites of initiation, antimicrobial peptides can act as opsonins to enhance phagocytosis by monocytes and phagocytes and can activate cells. In the latter, for example, treatment of osteoblasts and osteoblast-like MG63 cells with human beta-defensin (HBD)2 increases their proliferation rates. Treatment of osteoblast-like MG63 cells with HBD2 and HBD3 increases transcript levels of osteogenic markers for differentiation, increases antileukoprotease (ALP) levels, and enhances mineralized nodule formation. To facilitate adaptive immunity, antimicrobial peptides assist the uptake of antigens by monocytes or other antigen-presenting cells and later direct the process toward a Th1 or Th2 adaptive immune response. More commonly though, antimicrobial peptides induce a mixed response characterized by Th1-/Th2-specific antibodies and Th1/Th2 cytokines from antigen-exposed splenocytes of immunized animals. Finally, antimicrobial peptides can be detected in the margins around both oral and cutaneous wounds, and there is growing evidence to suggest they also play a dynamic role in wound healing by improving wound angiogenesis, vascularization, and reepithelialization.

Keywords

Antimicrobial Peptide Keyhole Limpet Hemocyanin Immature Dendritic Cell Systemic Lupus Erythematosus Disease Activity Human Gingival Fibroblast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. An LL, Yang YH, Ma XT, Lin YM, Li G, Song YH, Wu KF (2005) LL-37 enhances adaptive antitumor immune response in a murine model when genetically fused with M-CSFR (J6-1) DNA vaccine. Leuk Res 29(5):535–543CrossRefPubMedGoogle Scholar
  2. Barabas N, Rohrl J, Holler E, Hehlgans T (2013) Beta-defensins activate macrophages and synergize in pro-inflammatory cytokine expression induced by TLR ligands. Immunobiology 218(7):1005–1011CrossRefPubMedGoogle Scholar
  3. Befus AD, Mowat C, Gilchrist M, Hu J, Solomon S, Bateman A (1999) Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J Immunol 163(2):947–953PubMedGoogle Scholar
  4. Biragyn A (2005) Defensins – non-antibiotic use for vaccine development. Curr Protein Pept Sci 6(1):53–60CrossRefPubMedGoogle Scholar
  5. Biragyn A, Surenhu M, Yang D, Ruffini PA, Haines BA, Klyushnenkova E, Oppenheim JJ, Kwak LW (2001) Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J Immunol 167(11):6644–6653CrossRefPubMedGoogle Scholar
  6. Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O, Shirakawa AK, Farber JM, Segal DM, Oppenheim JJ, Kwak LW (2002) Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298(5595):1025–1029CrossRefPubMedGoogle Scholar
  7. Bloom WL, Blake FG (1948) Studies on an antibacterial polypeptide extracted from normal tissues. J Infect Dis 83(2):116–123CrossRefPubMedGoogle Scholar
  8. Bloom WL, Prigmore JR (1952) A method for preparation of antibacterial basic proteins of normal tissues. J Bacteriol 64(6):855–858PubMedPubMedCentralGoogle Scholar
  9. Bloom WL, Watson DW et al (1947) Studies on infection with Bacillus anthracis; preparation and characterization of an anthracidal substance from various animal tissues. J Infect Dis 80(1):41–52Google Scholar
  10. Borgwardt, D.S. et al. (2014) Histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and alters HagB-induced chemokine responses. Sci. Rep. 4, 3904; DOI: 10.1038/srep03904
  11. Bowdish DM, Hancock RE (2005) Anti-endotoxin properties of cationic host defence peptides and proteins. J Endotoxin Res 11(4):230–236CrossRefPubMedGoogle Scholar
  12. Bowdish DM, Davidson DJ, Scott MG, Hancock RE (2005) Immunomodulatory activities of small host defense peptides. Antimicrob Agents Chemother 49(5):1727–1732CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bramwell VW, Somavarapu S, Outschoorn I, Alpar HO (2003) Adjuvant action of melittin following intranasal immunisation with tetanus and diphtheria toxoids. J Drug Target 11(8-10):525–530CrossRefPubMedGoogle Scholar
  14. Brogden KA, Heidari M, Sacco RE, Palmquist D, Guthmiller JM, Johnson GK, Jia HP, Tack BF, McCray PB (2003) Defensin-induced adaptive immunity in mice and its potential in preventing periodontal disease. Oral Microbiol Immunol 18(2):95–99CrossRefPubMedGoogle Scholar
  15. Brogden KA, Guthmiller JM, Salzet M, Zasloff M (2005) The nervous system and innate immunity: the neuropeptide connection. Nat Immunol 6(6):558–564PubMedGoogle Scholar
  16. Brown KL, Poon GF, Birkenhead D, Pena OM, Falsafi R, Dahlgren C, Karlsson A, Bylund J, Hancock RE, Johnson P (2011) Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses. J Immunol 186(9):5497–5505CrossRefPubMedGoogle Scholar
  17. Caccavo D, Pellegrino NM, Altamura M, Rigon A, Amati L, Amoroso A, Jirillo E (2002) Antimicrobial and immunoregulatory functions of lactoferrin and its potential therapeutic application. J Endotoxin Res 8(6):403–417PubMedGoogle Scholar
  18. Chaly YV, Paleolog EM, Kolesnikova TS, Tikhonov II, Petratchenko EV, Voitenok NN (2000) Neutrophil alpha-defensin human neutrophil peptide modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells. Eur Cytokine Netw 11(2):257–266PubMedGoogle Scholar
  19. Chertov O, Michiel DF, Xu L, Wang JM, Tani K, Murphy WJ, Longo DL, Taub DD, Oppenheim JJ (1996) Identification of defensin-1, defensin-2, and CAP37/azurocidin as T- cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J Biol Chem 271(6):2935–2940CrossRefPubMedGoogle Scholar
  20. Chertov O, Yang D, Howard OM, Oppenheim JJ (2000) Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol Rev 177:68–78CrossRefPubMedGoogle Scholar
  21. Cole AM, Ganz T, Liese AM, Burdick MD, Liu L, Strieter RM (2001) Cutting edge: IFN-inducible ELR- CXC chemokines display defensin-like antimicrobial activity. J Immunol 167(2):623–627CrossRefPubMedGoogle Scholar
  22. Dietrich DE, Xiao X, Dawson DV, Belanger M, Xie H, Progulske-Fox A, Brogden KA (2008) Human alpha- and beta-defensins bind to immobilized adhesins from Porphyromonas gingivalis. Infect Immun 76(12):5714–5720CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dunkelberger JR, Song WC (2010) Complement and its role in innate and adaptive immune responses. Cell Res 20(1):34–50CrossRefPubMedGoogle Scholar
  24. Fleischmann J, Selsted ME, Lehrer RI (1985) Opsonic activity of MCP-1 and MCP-2, cationic peptides from rabbit alveolar macrophages. Diagn Microbiol Infect Dis 3(3):233–242CrossRefPubMedGoogle Scholar
  25. Frasca L, Lande R (2012) Role of defensins and cathelicidin LL37 in auto-immune and auto-inflammatory diseases. Curr Pharm Biotechnol 13(10):1882–97. Epub ahead of printGoogle Scholar
  26. Fritz JH, Brunner S, Birnstiel ML, Buschle M, Gabain A, Mattner F, Zauner W (2004) The artificial antimicrobial peptide KLKLLLLLKLK induces predominantly a TH2-type immune response to co-injected antigens. Vaccine 22(25-26):3274–3284CrossRefPubMedGoogle Scholar
  27. Gallo RL, Hooper LV (2012) Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 12(7):503–516CrossRefPubMedPubMedCentralGoogle Scholar
  28. Garcia-Valtanen P, Martinez-Lopez A, Ortega-Villaizan M, Perez L, Coll JM, Estepa A (2014) In addition to its antiviral and immunomodulatory properties, the zebrafish beta-defensin 2 (zfBD2) is a potent viral DNA vaccine molecular adjuvant. Antiviral Res 101:136–147CrossRefPubMedGoogle Scholar
  29. Giesemann T, Guttenberg G, Aktories K (2008) Human alpha-defensins inhibit Clostridium difficile toxin B. Gastroenterology 134(7):2049–2058CrossRefPubMedGoogle Scholar
  30. Gilliet M, Lande R (2008) Antimicrobial peptides and self-DNA in autoimmune skin inflammation. Curr Opin Immunol 20(4):401–407CrossRefPubMedGoogle Scholar
  31. Gough M, Hancock REW, Kelly NM (1996) Antiendotoxin activity of cationic peptide antimicrobial agents. Infect Immun 64(12):4922–4927PubMedPubMedCentralGoogle Scholar
  32. Greer A, Zenobia C, Darveau RP (2013) Defensins and LL-37: a review of function in the gingival epithelium. Periodontol 2000 63(1):67–79CrossRefPubMedPubMedCentralGoogle Scholar
  33. Groot F, Geijtenbeek TB, Sanders RW, Baldwin CE, Sanchez-Hernandez M, Floris R, van Kooyk Y, de Jong EC, Berkhout B (2005) Lactoferrin prevents dendritic cell-mediated human immunodeficiency virus type 1 transmission by blocking the DC-SIGN – gp120 interaction. J Virol 79(5):3009–3015CrossRefPubMedPubMedCentralGoogle Scholar
  34. Harvey LE, Kohlgraf KG, Mehalick LA, Raina M, Recker EN, Radhakrishnan S, Prasad SA, Vidva R, Progulske-Fox A, Cavanaugh JE, Vali S, Brogden KA (2013) Defensin DEFB103 bidirectionally regulates chemokine and cytokine responses to a pro-inflammatory stimulus. Sci Rep 3:1232CrossRefPubMedPubMedCentralGoogle Scholar
  35. Heilborn JD, Nilsson MF, Kratz G, Weber G, Sorensen O, Borregaard N, Stahle-Backdahl M (2003) The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol 120(3):379–389CrossRefPubMedGoogle Scholar
  36. Ichinose M, Asai M, Imai K, Sawada M (1996) Enhancement of phagocytosis by corticostatin I (CSI) in cultured mouse peritoneal macrophages. Immunopharmacology 35(2):103–109CrossRefPubMedGoogle Scholar
  37. Imatani T, Kato T, Minaguchi K, Okuda K (2000) Histatin 5 inhibits inflammatory cytokine induction from human gingival fibroblasts by Porphyromonas gingivalis. Oral Microbiol Immunol 15(6):378–382CrossRefPubMedGoogle Scholar
  38. Inomata M, Into T, Murakami Y (2010) Suppressive effect of the antimicrobial peptide LL-37 on expression of IL-6, IL-8 and CXCL10 induced by Porphyromonas gingivalis cells and extracts in human gingival fibroblasts. Eur J Oral Sci 118(6):574–581CrossRefPubMedGoogle Scholar
  39. Jan MS, Huang YH, Shieh B, Teng RH, Yan YP, Lee YT, Liao KK, Li C (2006) CC chemokines induce neutrophils to chemotaxis, degranulation, and alpha-defensin release. J Acquir Immune Defic Syndr 41(1):6–16CrossRefPubMedGoogle Scholar
  40. Kiatsurayanon C, Niyonsaba F, Smithrithee R, Akiyama T, Ushio H, Hara M, Okumura K, Ikeda S, Ogawa H (2014) Host defense (Antimicrobial) peptide, human beta-defensin-3, improves the function of the epithelial tight-junction barrier in human keratinocytes. J Invest Dermatol 134(8):2163–2173CrossRefPubMedGoogle Scholar
  41. Kim C, Gajendran N, Mittrucker HW, Weiwad M, Song YH, Hurwitz R, Wilmanns M, Fischer G, Kaufmann SH (2005) Human {alpha}-defensins neutralize anthrax lethal toxin and protect against its fatal consequences. Proc Natl Acad Sci U S A 102(13):4830–4835CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kim C, Slavinskaya Z, Merrill AR, Kaufmann SH (2006) Human alpha-defensins neutralize toxins of the mono-ADP-ribosyltransferase family. Biochem J 399(2):225–229CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kohlgraf KG, Ackermann A, Lu X, Burnell K, Belanger M, Cavanaugh JE, Xie H, Progulske-Fox A, Brogden KA (2010) Defensins attenuate cytokine responses yet enhance antibody responses to Porphyromonas gingivalis adhesins in mice. Future Microbiol 5(1):115–125CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kraus D, Deschner J, Jager A, Wenghoefer M, Bayer S, Jepsen S, Allam JP, Novak N, Meyer R, Winter J (2012) Human beta-defensins differently affect proliferation, differentiation, and mineralization of osteoblast-like MG63 cells. J Cell Physiol 227(3):994–1003CrossRefPubMedGoogle Scholar
  45. Kurosaka K, Chen Q, Yarovinsky F, Oppenheim JJ, Yang D (2005) Mouse cathelin-related antimicrobial peptide chemoattracts leukocytes using formyl peptide receptor-like 1/mouse formyl peptide receptor-like 2 as the receptor and acts as an immune adjuvant. J Immunol 174(10):6257–6265CrossRefPubMedGoogle Scholar
  46. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, Cao W, Wang YH, Su B, Nestle FO, Zal T, Mellman I, Schroder JM, Liu YJ, Gilliet M (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449(7162):564–569CrossRefPubMedGoogle Scholar
  47. Lee SH, Jun HK, Lee HR, Chung CP, Choi BK (2010) Antibacterial and lipopolysaccharide (LPS)-neutralising activity of human cationic antimicrobial peptides against periodontopathogens. Int J Antimicrob Agents 35(2):138–145CrossRefPubMedGoogle Scholar
  48. Li D, Wang W, Shi HS, Fu YJ, Chen X, Chen XC, Liu YT, Kan B, Wang YS (2014) Gene therapy with beta-defensin 2 induces antitumor immunity and enhances local antitumor effects. Hum Gene Ther 25(1):63–72CrossRefPubMedGoogle Scholar
  49. Lillard JW Jr, Boyaka PN, Chertov O, Oppenheim JJ, McGhee JR (1999) Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proc Natl Acad Sci U S A 96(2):651–656CrossRefPubMedPubMedCentralGoogle Scholar
  50. Liu H, Yu H, Gu Y, Xin A, Zhang Y, Diao H, Lin D (2013a) Human beta-defensin DEFB126 is capable of inhibiting LPS-mediated inflammation. Appl Microbiol Biotechnol 97(8):3395–3408CrossRefPubMedGoogle Scholar
  51. Liu J, Du X, Chen J, Hu L, Chen L (2013b) The induction expression of human beta-defensins in gingival epithelial cells and fibroblasts. Arch Oral Biol 58(10):1415–1421CrossRefPubMedGoogle Scholar
  52. Lu W, de Leeuw E (2013) Pro-inflammatory and pro-apoptotic properties of Human Defensin 5. Biochem Biophys Res Commun 436(3):557–562CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ma XT, Xu B, An LL, Dong CY, Lin YM, Shi Y, Wu KF (2006) Vaccine with beta-defensin 2-transduced leukemic cells activates innate and adaptive immunity to elicit potent antileukemia responses. Cancer Res 66(2):1169–1176CrossRefPubMedGoogle Scholar
  54. Martin SF (2014) Adaptation in the innate immune system and heterologous innate immunity. Cell Mol Life Sci 71:4115–4130CrossRefPubMedGoogle Scholar
  55. Miles K, Clarke DJ, Lu W, Sibinska Z, Beaumont PE, Davidson DJ, Barr TA, Campopiano DJ, Gray M (2009) Dying and necrotic neutrophils are anti-inflammatory secondary to the release of alpha-defensins. J Immunol 183(3):2122–2132CrossRefPubMedPubMedCentralGoogle Scholar
  56. Molhoek EM, den Hertog AL, de Vries AM, Nazmi K, Veerman EC, Hartgers FC, Yazdanbakhsh M, Bikker FJ, van der Kleij D (2009) Structure-function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses. Biol Chem 390(4):295–303CrossRefPubMedGoogle Scholar
  57. Motzkus D, Schulz-Maronde S, Heitland A, Schulz A, Forssmann WG, Jubner M, Maronde E (2006) The novel beta-defensin DEFB123 prevents lipopolysaccharide-mediated effects in vitro and in vivo. FASEB J 20(10):1701–1702CrossRefPubMedGoogle Scholar
  58. Nakatsuji T, Gallo RL (2012) Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol 132(3 Pt 2):887–895CrossRefPubMedGoogle Scholar
  59. Niyonsaba F, Someya A, Hirata M, Ogawa H, Nagaoka I (2001) Evaluation of the effects of peptide antibiotics human beta-defensins- 1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur J Immunol 31(4):1066–1075CrossRefPubMedGoogle Scholar
  60. Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, Nagaoka I, Okumura K, Ogawa H (2007) Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol 127(3):594–604CrossRefPubMedGoogle Scholar
  61. Owen SM, Rudolph D, Wang W, Cole AM, Sherman MA, Waring AJ, Lehrer RI, Lal RB (2004a) A theta-defensin composed exclusively of D-amino acids is active against HIV-1. J Pept Res 63(6):469–476CrossRefPubMedGoogle Scholar
  62. Owen SM, Rudolph DL, Wang W, Cole AM, Waring AJ, Lal RB, Lehrer RI (2004b) RC-101, a retrocyclin-1 analogue with enhanced activity against primary HIV type 1 isolates. AIDS Res Hum Retroviruses 20(11):1157–1165CrossRefPubMedGoogle Scholar
  63. Petrov V, Funderburg N, Weinberg A, Sieg S (2013) Human beta defensin-3 induces chemokines from monocytes and macrophages: diminished activity in cells from HIV-infected persons. Immunology 140(4):413–420CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pingel L, Lu X, Brogden KA (2007) Antimicrobial peptides as mucosal adjuvants. In: Brogden KA, Stanton TB, Cornick N et al (eds) Virulence mechanisms of bacterial pathogens, 4th edn. ASM Press, Washington, DC, pp 281–295Google Scholar
  65. Pingel LC, Kohlgraf KG, Hansen CJ, Eastman CG, Dietrich DE, Burnell KK, Srikantha RN, Xiao X, Belanger M, Progulske-Fox A, Cavanaugh JE, Guthmiller JM, Johnson GK, Joly S, Kurago ZB, Dawson DV, Brogden KA (2008) Human beta-defensin 3 binds to hemagglutinin B (rHagB), a non-fimbrial adhesin from Porphyromonas gingivalis, and attenuates a pro-inflammatory cytokine response. Immunol Cell Biol 86(8):643–649CrossRefPubMedGoogle Scholar
  66. Prohaszka Z, Nemet K, Csermely P, Hudecz F, Mezo G, Fust G (1997) Defensins purified from human granulocytes bind C1q and activate the classical complement pathway like the transmembrane glycoprotein gp41 of HIV-1. Mol Immunol 34(11):809–816CrossRefPubMedGoogle Scholar
  67. Ramos R, Silva JP, Rodrigues AC, Costa R, Guardao L, Schmitt F, Soares R, Vilanova M, Domingues L, Gama M (2011) Wound healing activity of the human antimicrobial peptide LL37. Peptides 32(7):1469–1476CrossRefPubMedGoogle Scholar
  68. Rehaume LM, Hancock RE (2008) Neutrophil-derived defensins as modulators of innate immune function. Crit Rev Immunol 28(3):185–200CrossRefPubMedGoogle Scholar
  69. Schaal JB, Tran D, Tran P, Osapay G, Trinh K, Roberts KD, Brasky KM, Tongaonkar P, Ouellette AJ, Selsted ME (2012) Rhesus macaque theta defensins suppress inflammatory cytokines and enhance survival in mouse models of bacteremic sepsis. PLoS One 7(12):e51337CrossRefPubMedPubMedCentralGoogle Scholar
  70. Scott MG, Rosenberger CM, Gold MR, Finlay BB, Hancock RE (2000) An alpha-helical cationic antimicrobial peptide selectively modulates macrophage responses to lipopolysaccharide and directly alters macrophage gene expression. J Immunol 165(6):3358–3365CrossRefPubMedGoogle Scholar
  71. Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE (2002) The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 169(7):3883–3891CrossRefPubMedGoogle Scholar
  72. Scott A, Weldon S, Buchanan PJ, Schock B, Ernst RK, McAuley DF, Tunney MM, Irwin CR, Elborn JS, Taggart CC (2011) Evaluation of the ability of LL-37 to neutralise LPS in vitro and ex vivo. PLoS One 6(10):e26525CrossRefPubMedPubMedCentralGoogle Scholar
  73. Semple F, Dorin JR (2012) beta-defensins: multifunctional modulators of infection, inflammation and more? J Innate Immun 4(4):337–348CrossRefPubMedGoogle Scholar
  74. Semple F, Webb S, Li HN, Patel HB, Perretti M, Jackson IJ, Gray M, Davidson DJ, Dorin JR (2010) Human beta-defensin 3 has immunosuppressive activity in vitro and in vivo. Eur J Immunol 40(4):1073–1078CrossRefPubMedPubMedCentralGoogle Scholar
  75. Shi J, Aono S, Lu W, Ouellette AJ, Hu X, Ji Y, Wang L, Lenz S, van Ginkel FW, Liles M, Dykstra C, Morrison EE, Elson CO (2007) A novel role for defensins in intestinal homeostasis: regulation of IL-1beta secretion. J Immunol 179(2):1245–1253CrossRefPubMedGoogle Scholar
  76. Sinno H, Prakash S (2013) Complements and the wound healing cascade: an updated review. Plast Surg Int 2013:146764PubMedPubMedCentralGoogle Scholar
  77. Skarnes RC, Watson DW (1957) Antimicrobial factors of normal tissues and fluids. Bacteriol Rev 21(4):273–294PubMedPubMedCentralGoogle Scholar
  78. Suphasiriroj W, Mikami M, Shimomura H, Sato S (2013) Specificity of antimicrobial peptide LL-37 to neutralize periodontopathogenic lipopolysaccharide activity in human oral fibroblasts. J Periodontol 84(2):256–264CrossRefPubMedGoogle Scholar
  79. Tani K, Murphy WJ, Chertov O, Salcedo R, Koh CY, Utsunomiya I, Funakoshi S, Asai O, Herrmann SH, Wang JM, Kwak LW, Oppenheim JJ (2000) Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens. Int Immunol 12(5):691–700CrossRefPubMedGoogle Scholar
  80. Territo MC, Ganz T, Selsted ME, Lehrer R (1989) Monocyte-chemotactic activity of defensins from human neutrophils. J Clin Invest 84(6):2017–2020CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tewary P, de la Rosa G, Sharma N, Rodriguez LG, Tarasov SG, Howard OM, Shirota H, Steinhagen F, Klinman DM, Yang D, Oppenheim JJ (2013) beta-Defensin 2 and 3 promote the uptake of self or CpG DNA, enhance IFN-alpha production by human plasmacytoid dendritic cells, and promote inflammation. J Immunol 191(2):865–874CrossRefPubMedPubMedCentralGoogle Scholar
  82. van den Berg RH, Faber-Krol MC, van Wetering S, Hiemstra PS, Daha MR (1998) Inhibition of activation of the classical pathway of complement by human neutrophil defensins. Blood 92(10):3898–3903PubMedGoogle Scholar
  83. Van Hemert JR, Recker EN, Dietrich D, Progulske-Fox A, Kurago ZB, Walters KS, Cavanaugh JE, Brogden KA (2012) Human beta-defensin-3 alters, but does not inhibit, the binding of Porphyromonas gingivalis haemagglutinin B to the surface of human dendritic cells. Int J Antimicrob Agents 40(1):75–79CrossRefPubMedPubMedCentralGoogle Scholar
  84. Van Wetering S, MannesseLazeroms SPG, Dijkman JH, Hiemstra PS (1997) Effect of neutrophil serine proteinases and defensins on lung epithelial cells: modulation of cytotoxicity and IL-8 production. J Leukoc Biol 62(2):217–226PubMedGoogle Scholar
  85. Vemula SV, Amen O, Katz JM, Donis R, Sambhara S, Mittal SK (2013) Beta-defensin 2 enhances immunogenicity and protection of an adenovirus-based H5N1 influenza vaccine at an early time. Virus Res 178(2):398–403CrossRefPubMedPubMedCentralGoogle Scholar
  86. Vordenbaumen S, Fischer-Betz R, Timm D, Sander O, Chehab G, Richter J, Bleck E, Schneider M (2010) Elevated levels of human beta-defensin 2 and human neutrophil peptides in systemic lupus erythematosus. Lupus 19(14):1648–1653CrossRefPubMedGoogle Scholar
  87. Walters SM, Dubey VS, Jeffrey NR, Dixon DR (2010) Antibiotic-induced Porphyromonas gingivalis LPS release and inhibition of LPS-stimulated cytokines by antimicrobial peptides. Peptides 31(9):1649–1653CrossRefPubMedGoogle Scholar
  88. Wang W, Cole AM, Hong T, Waring AJ, Lehrer RI (2003) Retrocyclin, an antiretroviral theta-defensin, is a lectin. J Immunol 170(9):4708–4716CrossRefPubMedGoogle Scholar
  89. Wang W, Mulakala C, Ward SC, Jung G, Luong H, Pham D, Waring AJ, Kaznessis Y, Lu W, Bradley KA, Lehrer RI (2006) Retrocyclins kill bacilli and germinating spores of Bacillus anthracis and inactivate anthrax lethal toxin. J Biol Chem 281(43):32755–32764CrossRefPubMedPubMedCentralGoogle Scholar
  90. Warnke PH, Voss E, Russo PA, Stephens S, Kleine M, Terheyden H, Liu Q (2013) Antimicrobial Peptide coating of dental implants: biocompatibility assessment of recombinant human Beta defensin-2 for human cells. Int J Oral Maxillofac Implants 28(4):982–988CrossRefPubMedGoogle Scholar
  91. Yamashita T, Saito K (1989) Purification, primary structure, and biological activity of guinea pig neutrophil cationic peptides. Infect Immun 57(8):2405–2409PubMedPubMedCentralGoogle Scholar
  92. Yang D, Oppenheim JJ (2004) Multiple functions of antimicrobial peptides in host immunity. In: Devine DA, Hancock REW (eds) Mammalian host defense peptides. Cambridge University Press, Cambridge, pp 39–68Google Scholar
  93. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OM, Oppenheim JJ (1999) b-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286(5439):525–528CrossRefPubMedGoogle Scholar
  94. Yang D, Chen Q, Chertov O, Oppenheim JJ (2000) Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol 68(1):9–14PubMedGoogle Scholar
  95. Yang D, Chertov O, Oppenheim JJ (2001) The role of mammalian antimicrobial peptides and proteins in awakening of innate host defenses and adaptive immunity. Cell Mol Life Sci 58(7):978–989CrossRefPubMedGoogle Scholar
  96. Yang D, Biragyn A, Kwak LW, Oppenheim JJ (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 23(6):291–296CrossRefPubMedGoogle Scholar
  97. Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J, Oppenheim JJ (2003) Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. J Leukoc Biol 74(3):448–455CrossRefPubMedGoogle Scholar
  98. Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ (2004) Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 22:181–215CrossRefPubMedGoogle Scholar
  99. Yeom M, Park J, Lee B, Choi SY, Kim KS, Lee H, Hahm DH (2011) Lactoferrin inhibits the inflammatory and angiogenic activation of bovine aortic endothelial cells. Inflamm Res 60(5):475–482CrossRefPubMedGoogle Scholar
  100. Yu H, Dong J, Gu Y, Liu H, Xin A, Shi H, Sun F, Zhang Y, Lin D, Diao H (2013) The novel human beta-defensin 114 regulates lipopolysaccharide (LPS)-mediated inflammation and protects sperm from motility loss. J Biol Chem 288(17):12270–12282CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Kim Alan Brogden
    • 1
    • 2
    Email author
  • Amber M. Bates
    • 1
  • Carol L. Fischer
    • 1
  1. 1.Dows Institute for Dental Research, College of DentistryThe University of IowaIowa CityUSA
  2. 2.Department of Periodontics, College of DentistryThe University of IowaIowa CityUSA

Personalised recommendations