Activity Patterns in Stroke Patients - Is There a Trend in Behaviour During Rehabilitation?

  • Adrian DerungsEmail author
  • Julia Seiter
  • Corina Schuster-Amft
  • Oliver Amft
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9277)


We describe stroke patients’ activity patterns and trends based on motion data acquired during their stay in an ambulatory day-care centre. Our aim was to explore and quantify intensity and development in the patients’ activity patterns as these may change during the rehabilitation process. We analyse motion data recordings from wearable inertial measurement units of eleven patients up to eleven days, totally 102 recording days. Using logic rules, we extract activity primitives, including affected arm move, sit, stand, walking, etc. from selected channels of the continuous median-filtered sensor data. Using relative duration of the activity primitives, we examine patient activity patterns regarding independence in mobility, distribution of walking over the days and trends in using the affected body side. Due to the heterogeneity of patients’ behaviour, we focused on analysing patient-specific activity patterns. Our exploration showed that the rule-based activity primitive analysis is beneficial to understand individual patient activity.


Activity primitives Trend indication Exploratory behaviour description Rule base data extraction 



We are thankful to the study participants and the therapists at the Reha Rheinfelden. This work was supported by the EU Marie Curie Network iCareNet, grant number 264738 and the Dutch Technology Foundation STW grant number 12184.


  1. 1.
    Bourbonnais, D., Noven, S.V.: Weakness in patients with hemiparesis. Am. J. Occup. Ther. 43(5), 313–319 (1989). CrossRefGoogle Scholar
  2. 2.
    Burns, A., Greene, B.R., McGrath, M.J., OShea, T.J., Kuris, B., Ayer, S.M., Stroiescu, F., Cionca, V.: Shimmer ™- a wireless sensor platform for noninvasive biomedical research. IEEE Sens. J. 10(9), 1527–1534 (2010). CrossRefGoogle Scholar
  3. 3.
    Cirstea, M.C.: Compensatory strategies for reaching in stroke. Brain 123(5), 940–953 (2000). CrossRefGoogle Scholar
  4. 4.
    Del Din, S., Patel, S., Cobelli, C., Bonato, P.: Estimating fugl-meyer clinical scores in stroke survivors using wearable sensors. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, August 2011.
  5. 5.
    Di Fabio, R.P., Badke, M.B., Duncan, P.W.: Adapting human postural reflexes following localized cerebrovascular lesion: analysis of bilateral long latency responses. Brain Res. 363(2), 257–264 (1986)CrossRefGoogle Scholar
  6. 6.
    Fugl-Meyer, A.R., Jääskö, L., Leyman, I., Olsson, S., Steglind, S.: The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 7(1), 13–31 (1974). Google Scholar
  7. 7.
    Gietzelt, M., Wolf, K., Kohlmann, M., Marschollek, M., Haux, R., et al.: Measurement of accelerometry-based gait parameters in people with and without dementia in the field. Meth. Inf. Med. 52(4), 319–325 (2013)CrossRefGoogle Scholar
  8. 8.
    Hine, N., Judson, A., Ashraf, S.N., Arnott, J., Sixsmith, A., Brown, S., Garner, P.: Modelling the behaviour of elderly people as a means of monitoring well being. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 241–250. Springer, Heidelberg (2005). CrossRefGoogle Scholar
  9. 9.
    Iosa, M., Fusco, A., Morone, G., Pratesi, L., Coiro, P., Venturiero, V., De Angelis, D., Bragoni, M., Paolucci, S.: Assessment of upper-body dynamic stability during walking in patients with subacute stroke. J. Rehabil. Res. Dev. 49(3), 439–450 (2012)CrossRefGoogle Scholar
  10. 10.
    Knorr, B., Hughes, R., Sherrill, D., Stein, J., Akay, M., Bonato, P.: Quantitative measures of functional upper limb movement in persons after stroke. In: Conference Proceedings of the 2nd International IEEE EMBS Conference on Neural Engineering (2005).
  11. 11.
    Murphy, T.H., Corbett, D.: Plasticity during stroke recovery: from synapse to behaviour. Nat. Rev. Neurosci. 10(12), 861–872 (2009). CrossRefGoogle Scholar
  12. 12.
    Parnandi, Wade, E., Mataric, M.: Motor function assessment using wearable inertial sensors. In: 2010 Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (EMBC), pp. 86–89 (2010).
  13. 13.
    Patel, S., Hughes, R., Hester, T., Stein, J., Akay, M., Dy, J., Bonato, P.: A novel approach to monitor rehabilitation outcomes in stroke survivors using wearable technology. Proc. IEEE 98(3), 450–461 (2010). CrossRefGoogle Scholar
  14. 14.
    Rashidi, P., Cook, D.J., Holder, L.B., Schmitter-Edgecombe, M.: Discovering activities to recognize and track in a smart environment. IEEE Trans. Knowl. Data Eng. 23(4), 527–539 (2011). CrossRefGoogle Scholar
  15. 15.
    Robben, S., Pol, M., Kröse, B.: Longitudinal ambient sensor monitoring for functional health assessments: a case study. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, UbiComp 2014 Adjunct, pp. 1209–1216. ACM, New York (2014).
  16. 16.
    Salah, A.A., Morros, R., Luque, J., Segura, C., Hernando, J., Ambekar, O., Schouten, B., Pauwels, E.: Multimodal identification and localization of users in a smart environment. J. Multimodal User Interfaces 2(2), 75–91 (2008). CrossRefGoogle Scholar
  17. 17.
    Seiderer, A., Hammer, S., Andre, E., Mayr, M., Rist, T.: Exploring digital image frames for lifestyle intervention to improve well-being of older adults. In: Proceedings of the 5th International Conference on Digital Health 2015 - DH 15 (2015).
  18. 18.
    Seiter, J., Derungs, A., Schuster-Amft, C., Amft, O., Troester, G.: Daily life activity routine discovery in hemiparetic rehabilitation patients using topic models. Meth. Inf. Med. 54(2), 248–255 (2015). CrossRefGoogle Scholar
  19. 19.
    Spina, G., Roberts, F., Weppner, J., Lukowicz, P., Amft, O.: Crntc+: a smartphone-based sensor processing framework for prototyping personal healthcare applications. In: 2013 7th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 252–255, May 2013Google Scholar
  20. 20.
    Suryadevara, N., Mukhopadhyay, S.C., Wang, R., Rayudu, R.: Forecasting the behavior of an elderly using wireless sensors data in a smart home. Eng. Appl. Artif. Intell. 26(10), 2641–2652 (2013)CrossRefGoogle Scholar
  21. 21.
    Tabar, A.M., Keshavarz, A., Aghajan, H.: Smart home care network using sensor fusion and distributed vision-based reasoning. In: Proceedings of the 4th ACM international workshop on Video surveillance and sensor networks - VSSN 06 (2006).
  22. 22.
    Wolf, S.L., Catlin, P.A., Ellis, M., Archer, A.L., Morgan, B., Piacentino, A.: Assessing wolf motor function test as outcome measure for research in patients after stroke. Stroke 32(7), 1635–1639 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Adrian Derungs
    • 1
    Email author
  • Julia Seiter
    • 2
  • Corina Schuster-Amft
    • 3
  • Oliver Amft
    • 1
  1. 1.ACTLab, Chair of Sensor TechnologyUniversity of PassauPassauGermany
  2. 2.Wearable Computing LaboratoryETH ZrichZürichSwitzerland
  3. 3.Research DepartmentReha RheinfeldenRheinfeldenSwitzerland

Personalised recommendations